論文の概要: Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation
- arxiv url: http://arxiv.org/abs/2403.12650v1
- Date: Tue, 19 Mar 2024 11:34:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 14:23:34.356682
- Title: Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation
- Title(参考訳): 誤差推定を伴うパラメトリックPDEのための適応型多レベルニューラルネットワーク
- Authors: Janina E. Schütte, Martin Eigel,
- Abstract要約: ニューラルネットワークアーキテクチャは高次元パラメータ依存偏微分方程式(pPDE)を解くために提示される
モデルデータのパラメータを対応する有限要素解にマッピングするために構築される。
適応有限要素法(AFEM)で生成される粗いグリッド解と一連の補正を出力する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To solve high-dimensional parameter-dependent partial differential equations (pPDEs), a neural network architecture is presented. It is constructed to map parameters of the model data to corresponding finite element solutions. To improve training efficiency and to enable control of the approximation error, the network mimics an adaptive finite element method (AFEM). It outputs a coarse grid solution and a series of corrections as produced in an AFEM, allowing a tracking of the error decay over successive layers of the network. The observed errors are measured by a reliable residual based a posteriori error estimator, enabling the reduction to only few parameters for the approximation in the output of the network. This leads to a problem adapted representation of the solution on locally refined grids. Furthermore, each solution of the AFEM is discretized in a hierarchical basis. For the architecture, convolutional neural networks (CNNs) are chosen. The hierarchical basis then allows to handle sparse images for finely discretized meshes. Additionally, as corrections on finer levels decrease in amplitude, i.e., importance for the overall approximation, the accuracy of the network approximation is allowed to decrease successively. This can either be incorporated in the number of generated high fidelity samples used for training or the size of the network components responsible for the fine grid outputs. The architecture is described and preliminary numerical examples are presented.
- Abstract(参考訳): 高次元パラメータ依存偏微分方程式(pPDE)を解くため、ニューラルネットワークアーキテクチャを提案する。
モデルデータのパラメータを対応する有限要素解にマッピングするために構築される。
トレーニング効率を向上し、近似誤差の制御を可能にするため、適応有限要素法(AFEM)を模倣する。
AFEMで生成された粗いグリッド解と一連の補正を出力し、ネットワークの連続する層上でエラーの減衰を追跡する。
観測された誤差は、信頼性の高い残差に基づく後誤差推定器によって測定され、ネットワークの出力における近似のパラメータをわずかに減らすことができる。
これにより、局所的に洗練された格子上の解の適応表現が導かれる。
さらに、AFEMの各解は階層的に離散化される。
アーキテクチャでは、畳み込みニューラルネットワーク(CNN)が選択される。
階層的な基盤は、細分化されたメッシュのスパースイメージを処理できる。
さらに、より微細なレベルの補正が振幅の減少、すなわち全体近似の重要度を減少させるため、ネットワーク近似の精度を連続的に低下させることができる。
これは、トレーニングに使用される生成された高忠実度サンプルの数や、細いグリッド出力に責任を負うネットワークコンポーネントのサイズに組み込むことができる。
アーキテクチャを説明し、予備的な数値例を示す。
関連論文リスト
- Multilevel CNNs for Parametric PDEs based on Adaptive Finite Elements [0.0]
高次元パラメータ依存偏微分方程式の多値性を利用するニューラルネットワークアーキテクチャが提案されている。
ネットワークは適応的に洗練された有限要素メッシュのデータで訓練される。
適応型マルチレベルスキームに対して完全収束と複雑性解析を行う。
論文 参考訳(メタデータ) (2024-08-20T13:32:11Z) - A Nonoverlapping Domain Decomposition Method for Extreme Learning Machines: Elliptic Problems [0.0]
エクストリーム・ラーニング・マシン(ELM)は、単一層フィードフォワードニューラルネットワークを用いて偏微分方程式(PDE)を解く手法である。
本稿では,EMMのトレーニング時間を短縮するだけでなく,並列計算にも適する非重複領域分解法(DDM)を提案する。
論文 参考訳(メタデータ) (2024-06-22T23:25:54Z) - Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering [21.459567997723376]
多層パーセプトロンのレベルセットとしての形状のインプシット表現は、最近、形状解析、圧縮、再構成タスクで栄えている。
メッシュフリーで逆障害物散乱問題を解決するための暗黙的ニューラルネットワーク表現に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-04T17:16:09Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
ネストネットワーク(Nested Network)またはスリムブルネットワーク(Slimmable Network)は、テスト期間中にアーキテクチャを即座に調整できるニューラルネットワークである。
最近の研究は、トレーニング中に重要なレイヤのノードを順序付けできる"ネストされたドロップアウト"層に焦点を当てている。
論文 参考訳(メタデータ) (2021-01-27T12:34:58Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。