論文の概要: Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization
- arxiv url: http://arxiv.org/abs/2104.12289v1
- Date: Sun, 25 Apr 2021 23:40:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 14:19:25.637274
- Title: Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization
- Title(参考訳): 直交非負行列因子分解に基づく空間コヒーレントクラスタリング
- Authors: Pascal Fernsel
- Abstract要約: 本稿では,クラスタメンバシップ行列の総変動(TV)正規化手順に基づく作業クラスタリングモデルを紹介する。
マトリックス支援レーザー脱離イオン化イメージング測定から得られた超スペクトルデータセット上の提案手法をすべて数値的に評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical approaches in cluster analysis are typically based on a feature
space analysis. However, many applications lead to datasets with additional
spatial information and a ground truth with spatially coherent classes, which
will not necessarily be reconstructed well by standard clustering methods.
Motivated by applications in hyperspectral imaging, we introduce in this work
clustering models based on orthogonal nonnegative matrix factorization, which
include an additional total variation (TV) regularization procedure on the
cluster membership matrix to enforce the needed spatial coherence in the
clusters. We propose several approaches with different optimization techniques,
where the TV regularization is either performed as a subsequent postprocessing
step or included into the clustering algorithm. Finally, we provide a numerical
evaluation of all proposed methods on a hyperspectral dataset obtained from a
matrix-assisted laser desorption/ionisation imaging measurement, which leads to
significantly better clustering results compared to classical clustering
models.
- Abstract(参考訳): クラスター分析における古典的なアプローチは、典型的には特徴空間分析に基づいている。
しかし、多くのアプリケーションは空間情報と空間的に整合したクラスを持つ基底真理を持つデータセットに導かれるため、標準的なクラスタリング手法によって必ずしもうまく再構築されるとは限らない。
超スペクトルイメージングの応用に動機づけられた本研究では,クラスタメンバシップマトリックスに付加的な総変動(tv)正則化手順を含む直交非負行列分解に基づくクラスタリングモデルを導入し,クラスタ内の空間的コヒーレンスを強制する。
本研究では,後処理ステップとしてtv正規化を行うか,クラスタリングアルゴリズムに組み込むか,異なる最適化手法を用いた複数の手法を提案する。
最後に,マトリクス支援レーザー脱離イオン化イメージング測定から得られたハイパースペクトルデータセットのすべての提案手法を数値的に評価し,従来のクラスタリングモデルと比較して有意に優れたクラスタリング結果が得られることを示す。
関連論文リスト
- Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Adaptive Graph Convolutional Subspace Clustering [10.766537212211217]
スペクトル型サブスペースクラスタリングアルゴリズムは多くのサブスペースクラスタリングアプリケーションにおいて優れた性能を示している。
本稿では,グラフ畳み込みネットワークにヒントを得たグラフ畳み込み手法を用いて特徴抽出法と係数行列制約を同時に開発する。
AGCSCを用いることで、元のデータサンプルの集合的特徴表現がサブスペースクラスタリングに適していると主張する。
論文 参考訳(メタデータ) (2023-05-05T10:27:23Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - Multiscale Clustering of Hyperspectral Images Through Spectral-Spatial
Diffusion Geometry [9.619814126465206]
クラスタリングアルゴリズムはデータセットを類似点のグループに分割する。
本論文の主な貢献は,マルチスケール空間規則化拡散学習(M-SRDL)クラスタリングアルゴリズムである。
マルチスケールクラスタリングフレームワークに空間正規化を組み込むことは、hsiデータに適用するとより滑らかでより一貫性のあるクラスタに対応できることを示す。
論文 参考訳(メタデータ) (2021-03-29T17:24:28Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Spectral clustering via adaptive layer aggregation for multi-layer
networks [6.0073653636512585]
有効凸層アグリゲーションに基づく積分スペクトルクラスタリング手法を提案する。
提案手法は, 広く用いられている手法と比較して, 極めて競争力が高いことを示す。
論文 参考訳(メタデータ) (2020-12-07T21:58:18Z) - Doubly Stochastic Subspace Clustering [9.815735805354905]
多くの最先端サブスペースクラスタリング法は、まずデータポイント間の親和性行列を構築し、その親和性にスペクトルクラスタリングを適用することによって、2段階のプロセスに従う。
本研究では、データの自己表現表現と、スペクトルクラスタリングによく正規化された親和性行列の両方を学習する。
実験により,コンピュータビジョンにおける多くの共通データセットに対して,最先端のサブスペースクラスタリング性能が得られた。
論文 参考訳(メタデータ) (2020-11-30T14:56:54Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。