論文の概要: Variational Quantum Approximated Spectral Clustering
- arxiv url: http://arxiv.org/abs/2309.04465v2
- Date: Mon, 31 Mar 2025 17:15:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 16:16:39.693263
- Title: Variational Quantum Approximated Spectral Clustering
- Title(参考訳): 変分量子近似スペクトルクラスタリング
- Authors: Hyeong-Gyu Kim, Siheon Park, June-Koo Kevin Rhee,
- Abstract要約: 本稿では、量子距離に基づく分類器モデルをクラスタリングフレームワークに拡張する可変量子近似スペクトルクラスタリング(VQASC)を提案する。
提案手法では, 重み付き和を非直交グラフの様々な行列表現上で計算できるように, 深度がデータセットサイズに準4次スケールの効率的な量子回路設計を用いる。
- 参考スコア(独自算出の注目度): 0.6718184400443239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering is a fundamental task for analyzing unlabeled data based solely on its underlying distribution. Spectral clustering is a clustering method that represents a dataset as a graph and uses the relationships between data points. However, classical spectral clustering methods incur high computational costs that can scale cubically with the dataset size-as is typical for approaches that involve solving eigenvalue problems. In this work, we propose Variational Quantum Approximated Spectral Clustering (VQASC), which extends quantum distance-based classifier models to the clustering framework. Our approach uses efficient quantum circuit designs whose depth scales sub-quadratically with dataset size, enabling the computation of weighted sums over various matrix representations of an undirected graph. Furthermore, we adopt an empirical risk formulation to reduce the impact of local minima arising from parameterized quantum circuits, and we validate our approach through simulations on real-world datasets.
- Abstract(参考訳): クラスタリングは、基盤となる分散のみに基づいてラベルのないデータを解析するための基本的なタスクである。
スペクトルクラスタリング(Spectral clustering)は、データセットをグラフとして表現し、データポイント間の関係を利用するクラスタリング手法である。
しかし、古典的なスペクトルクラスタリング手法では、データセットのサイズを3倍にスケールできる計算コストが高く、固有値問題の解決に関わるアプローチでは典型的である。
本研究では、量子距離に基づく分類器モデルをクラスタリングフレームワークに拡張する変動量子近似スペクトルクラスタリング(VQASC)を提案する。
提案手法では, 重み付き和を非直交グラフの様々な行列表現上で計算できるように, 深度がデータセットサイズに準4次スケールの効率的な量子回路設計を用いる。
さらに、パラメータ化量子回路から生じる局所最小値の影響を低減するために、実証的なリスク定式化を採用し、実世界のデータセット上でのシミュレーションを通してアプローチを検証する。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
本研究は、4つの異なる最適化問題にまたがっていくつかの非フォールト耐性量子コンピューティングアルゴリズムを体系的にベンチマークする。
我々のベンチマークには、変分量子固有解法など、ノイズの多い中間スケール量子(NISQ)アルゴリズムが含まれている。
以上の結果から,FTQC以外のアルゴリズムは全ての問題に対して最適に動作しないことが明らかとなり,アルゴリズム戦略の調整の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-10-30T08:41:29Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Maximum Likelihood Estimation on Stochastic Blockmodels for Directed Graph Clustering [22.421702511126373]
我々は、有向ブロックモデルにおいて、基盤となるコミュニティを推定するものとしてクラスタリングを定式化する。
本稿では,2つの効率的かつ解釈可能な有向クラスタリングアルゴリズム,スペクトルクラスタリングアルゴリズム,半定値プログラミングに基づくクラスタリングアルゴリズムを紹介する。
論文 参考訳(メタデータ) (2024-03-28T15:47:13Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Faster variational quantum algorithms with quantum kernel-based
surrogate models [0.0]
本稿では,雑音量子プロセッサ上での小型から中規模の変分アルゴリズムを提案する。
提案手法は,計算負荷をこれらのハイブリッドアルゴリズムの古典的成分にシフトさせ,量子プロセッサへのクエリ数を劇的に削減する。
論文 参考訳(メタデータ) (2022-11-02T14:11:25Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
変分量子固有解法(VQE)は、量子コンピュータにおけるハイブリッド量子古典アルゴリズムの候補として期待されている。
本稿では,従来のコンピュータ上で最適化プロセス全体を効率的に行う古典最適化VQE(co-VQE)を提案する。
共同VQEでは、パラメータが最適化された後のみ、量子コンピュータを用いて非局所的な量を測定する。
論文 参考訳(メタデータ) (2022-02-07T02:26:58Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
本稿では,クラスタメンバシップ行列の総変動(TV)正規化手順に基づく作業クラスタリングモデルを紹介する。
マトリックス支援レーザー脱離イオン化イメージング測定から得られた超スペクトルデータセット上の提案手法をすべて数値的に評価する。
論文 参考訳(メタデータ) (2021-04-25T23:40:41Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
機械学習におけるデータ表現のための固有problemsの解を高速化する量子手続きを提供する。
これらのサブルーチンのパワーと実用性は、主成分分析、対応解析、潜在意味解析のための入力行列の大きさのサブ線形量子アルゴリズムによって示される。
その結果、入力のサイズに依存しない実行時のパラメータは妥当であり、計算モデル上の誤差が小さいことが示され、競合的な分類性能が得られる。
論文 参考訳(メタデータ) (2021-04-19T00:41:43Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
本稿では、離散的かつ連続的な状態空間に対するRLタスクを解くために使用できるパラメタライズド量子回路(PQC)のトレーニング手法を提案する。
量子Q学習エージェントのどのアーキテクチャ選択が、特定の種類の環境をうまく解決するのに最も重要であるかを検討する。
論文 参考訳(メタデータ) (2021-03-28T08:57:22Z) - Spectral clustering on spherical coordinates under the degree-corrected
stochastic blockmodel [5.156484100374058]
次数補正ブロックモデルに基づく新しいスペクトルクラスタリングアルゴリズムを提案する。
その結果,コンピュータネットワークにおける競合手法よりも性能が向上した。
論文 参考訳(メタデータ) (2020-11-09T16:55:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Spectral Clustering using Eigenspectrum Shape Based Nystrom Sampling [19.675277307158435]
本稿では,新しいサンプリング手法であるCentroid Minimum Sum of Squared similarities (CMS3)と,それをいつ使用するかを示す,スケーラブルなNystromベースのクラスタリングアルゴリズムを提案する。
我々のデータセットはデータセットの固有スペクトル形状に依存しており、他の最先端手法と比較して、テストにおいて競合する低ランク近似が得られる。
論文 参考訳(メタデータ) (2020-07-21T17:49:03Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
局所グラフクラスタリングのためのネットワークLasso法の統計的および計算的性質について検討する。
nLassoによって提供されるクラスタは、クラスタ境界とシードノードの間のネットワークフローを通じて、エレガントに特徴付けられる。
論文 参考訳(メタデータ) (2020-04-25T17:52:05Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Robust spectral clustering using LASSO regularization [0.0]
本稿では,ブロックモデルと密接な関係を持つ新しいランダムモデルを用いて,スペクトルクラスタリングの一種である1スペクトルクラスタリングを提案する。
その目標は、グラフの自然な構造を明らかにする1の最小化問題のスパース固有基底解を促進することである。
論文 参考訳(メタデータ) (2020-04-08T07:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。