Electrically-triggered spin-photon devices in silicon
- URL: http://arxiv.org/abs/2501.10597v1
- Date: Fri, 17 Jan 2025 23:08:54 GMT
- Title: Electrically-triggered spin-photon devices in silicon
- Authors: Michael Dobinson, Camille Bowness, Simon A. Meynell, Camille Chartrand, Elianor Hoffmann, Melanie Gascoine, Iain MacGilp, Francis Afzal, Christian Dangel, Navid Jahed, Michael L. W. Thewalt, Stephanie Simmons, Daniel B. Higginbottom,
- Abstract summary: We electrically excite the silicon T centre in integrated optoelectronic devices that combine nanophotonic waveguides and cavities with p-i-n diodes.
We observe single-photon electroluminescence from a cavity-coupled T centre with $92(8)%$ fidelity.
These findings present a new telecommunications band light source for silicon and a highly parallel control method for T centre quantum processors.
- Score: 0.0
- License:
- Abstract: Quantum networking and computing technologies demand scalable hardware with high-speed control for large systems of quantum devices. Solid-state platforms have emerged as promising candidates, offering scalable fabrication for a wide range of qubits. Architectures based on spin-photon interfaces allow for highly-connected quantum networks over photonic links, enabling entanglement distribution for quantum networking and distributed quantum computing protocols. With the potential to address these demands, optically-active spin defects in silicon are one proposed platform for building quantum technologies. Here, we electrically excite the silicon T centre in integrated optoelectronic devices that combine nanophotonic waveguides and cavities with p-i-n diodes. We observe single-photon electroluminescence from a cavity-coupled T centre with $g^{(2)}(0)=0.05(2)$. Further, we use the electrically-triggered emission to herald the electron spin state, initializing it with $92(8)\%$ fidelity. This shows, for the first time, electrically-injected single-photon emission from a silicon colour centre and a new method of electrically-triggered spin initialization. These findings present a new telecommunications band light source for silicon and a highly parallel control method for T centre quantum processors, advancing the T centre as a versatile defect for scalable quantum technologies.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Scalable Fault-Tolerant Quantum Technologies with Silicon Colour Centres [0.0]
A novel quantum information processing architecture based on optically active spins in silicon is proposed.
It offers a combined platform for scalable fault-tolerant quantum computing and networking.
arXiv Detail & Related papers (2023-11-08T17:52:57Z) - Cavity-coupled telecom atomic source in silicon [0.0]
In this work, we demonstrate the cavity-enhanced fluorescence emission from a single T center.
Results represent a significant step towards building efficient T center spin-photon interfaces for quantum information processing and networking applications.
arXiv Detail & Related papers (2023-10-30T21:03:38Z) - All-Optical Spin Initialization via a Cavity Broadened Optical
Transition in On-Chip Hybrid Quantum Photonics [33.607979748917465]
Hybrid quantum photonic systems connect classical photonics to the quantum world and promise to deliver efficient light-matter quantum interfaces.
We demonstrate all-optical readout of the electronic spin of a negatively-charged silicon-vacancy center in a nanodiamond coupled to a silicon nitride photonic crystal cavity.
Our results mark an important step towards the realization of a hybrid spin-photon interface based on silicon nitride photonics and the silicon-vacancy center's electron spin in nanodiamonds with potential use for quantum networks, quantum communication and distributed quantum computation.
arXiv Detail & Related papers (2023-08-29T18:03:11Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Waveguide-integrated silicon T centres [0.0]
Solid-state colour centres, and in particular T centres in silicon, offer competitive technological and commercial advantages.
These newly rediscovered silicon defects offer direct telecommunications-band photonic emission, long-lived electron and nuclear spin qubits.
We show that further improvements may still be possible by measuring nearly lifetime-limited homogeneous linewidths in isotopically pure bulk crystals.
arXiv Detail & Related papers (2022-09-28T17:23:31Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Atomically-thin Single-photon Sources for Quantum Communication [0.28348950186890465]
Confined excitons in monolayers of transition metal dichalcogenides (TMDCs) constitute an emerging type of emitter for quantum light generation.
We pioneer the practical suitability of TMDC devices in quantum communication.
Our work opens the route towards wider applications of quantum information technologies using TMDC single-photon sources.
arXiv Detail & Related papers (2022-04-13T14:40:43Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.