Multi-particle interference in an electronic Mach-Zehnder interferometer
- URL: http://arxiv.org/abs/2104.13136v1
- Date: Tue, 27 Apr 2021 12:30:49 GMT
- Title: Multi-particle interference in an electronic Mach-Zehnder interferometer
- Authors: Janne Kotilahti, Pablo Burset, Michael Moskalets, Christian Flindt
- Abstract summary: We investigate multi-particle effects in an electronic Mach-Zehnder interferometer driven by dynamic voltage pulses.
For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid.
Our findings may be observed in future experiments by injecting multi-particle pulses into an electronic Mach-Zehnder interferometer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent development of dynamic single-electron sources makes it possible
to observe and manipulate the quantum properties of individual charge carriers
in mesoscopic circuits. Here, we investigate multi-particle effects in an
electronic Mach-Zehnder interferometer driven by dynamic voltage pulses. To
this end, we employ a Floquet scattering formalism to evaluate the interference
current and the visibility in the outputs of the interferometer. An injected
multi-particle state can be described by its first-order correlation function,
which we decompose into a sum of elementary correlation functions that each
represent a single particle. Each particle in the pulse contributes
independently to the interference current, while the visibility (determined by
the maximal interference current) exhibits a Fraunhofer-like diffraction
pattern caused by the multi-particle interference between different particles
in the pulse. For a sequence of multi-particle pulses, the visibility resembles
the diffraction pattern from a grid, with the role of the grid and the spacing
between the slits being played by the pulses and the time delay between them.
Our findings may be observed in future experiments by injecting multi-particle
pulses into an electronic Mach-Zehnder interferometer.
Related papers
- Effects of resonant dipole-dipole interactions in the spin noise of atomic vapors [0.0]
We report unusual lineshapes of the spin noise spectra with a strong density dependence.
We show that these features are the hallmark of a strong dipole-dipole interaction between binaries within the ensemble.
This work demonstrates the potential of spin noise spectroscopy to observe and quantify strong interactions occurring within a particle ensemble.
arXiv Detail & Related papers (2024-06-28T18:41:23Z) - Dephasing due to electromagnetic interactions in spatial qubits [0.0]
Noise analysis in frequency-space focusing on electromagnetic sources of dephasing.
We will apply the obtained formulae to situations with two adjacent micro-particles.
arXiv Detail & Related papers (2023-12-09T03:47:35Z) - Entanglement-induced collective many-body interference [62.22849132943891]
We propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed.
We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle.
A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
arXiv Detail & Related papers (2023-10-12T18:00:02Z) - Cavity-mediated long-range interactions in levitated optomechanics [0.0]
We show for the first time programmable cavity-mediated interactions between nanoparticles in vacuum.
The interaction is mediated by photons scattered by spatially separated particles in a cavity.
Our work paves the way towards exploring many-body effects in nanoparticles with programmable cavity-mediated interactions, generating entanglement of motion, and using interacting particle arrays for optomechanical sensing.
arXiv Detail & Related papers (2023-08-28T17:24:23Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Internal decoherence in nano-object interferometry due to phonons [0.0]
We discuss the coherent splitting and recombining of a nanoparticles in a mesoscopic Stern-Gerlach interferometer.
We calculate the internal decoherence which arises as the displaced impurity excites internal degrees of freedom.
We find that for a wide range of masses, forces and temperatures, phonons do not inhibit Stern-Gerlach interferometry with micro-scale objects.
arXiv Detail & Related papers (2021-12-02T14:08:46Z) - Quantum dynamics simulation of intramolecular singlet fission in
covalently linked tetracene dimer [0.0]
We study singlet fission in tetracene para-dimers, covalently linked by a phenyl group.
In contrast to most previous works, we account for the full quantum dynamics of the combined excitonic and vibrational system.
arXiv Detail & Related papers (2021-07-29T13:15:24Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.