Coevolutionary Pareto Diversity Optimization
- URL: http://arxiv.org/abs/2204.05457v1
- Date: Tue, 12 Apr 2022 00:52:13 GMT
- Title: Coevolutionary Pareto Diversity Optimization
- Authors: Aneta Neumann, Denis Antipov, Frank Neumann
- Abstract summary: We introduce a coevolutionary Pareto Diversity Optimization approach.
In particular, we show that the use of inter-population crossover further improves the diversity of the set of solutions.
- Score: 13.026567958569965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing diverse sets of high quality solutions for a given optimization
problem has become an important topic in recent years. In this paper, we
introduce a coevolutionary Pareto Diversity Optimization approach which builds
on the success of reformulating a constrained single-objective optimization
problem as a bi-objective problem by turning the constraint into an additional
objective. Our new Pareto Diversity optimization approach uses this
bi-objective formulation to optimize the problem while also maintaining an
additional population of high quality solutions for which diversity is
optimized with respect to a given diversity measure. We show that our standard
co-evolutionary Pareto Diversity Optimization approach outperforms the recently
introduced DIVEA algorithm which obtains its initial population by generalized
diversifying greedy sampling and improving the diversity of the set of
solutions afterwards. Furthermore, we study possible improvements of the Pareto
Diversity Optimization approach. In particular, we show that the use of
inter-population crossover further improves the diversity of the set of
solutions.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Evolutionary Multi-Objective Diversity Optimization [14.930208990741129]
We treat this problem as a bi-objective optimization problem, which is to obtain a range of quality-diversity trade-offs.
We present a suitable general implementation scheme that is compatible with existing evolutionary multi-objective search methods.
The resulting non-dominated populations exhibit rich qualitative features, giving insights into the optimization instances and the quality-diversity trade-offs they induce.
arXiv Detail & Related papers (2024-01-15T03:59:42Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Rigorous Runtime Analysis of Diversity Optimization with GSEMO on
OneMinMax [13.026567958569965]
We study how the GSEMO algorithm with additional diversity-enhancing enhancements optimize a diversity of its population on a bi-objective benchmark problem OneMin.
We prove that it finds a population with optimal diversity in expected time $O(n2)$, when the problem size $n$ is odd.
For reaching our goal, we analyse the random walk of the population, which reflects the frequency of changes in the population and their outcomes.
arXiv Detail & Related papers (2023-07-14T09:43:29Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Computing High-Quality Solutions for the Patient Admission Scheduling
Problem using Evolutionary Diversity Optimisation [10.609857097723266]
We adapt the evolutionary diversity optimisation for a real-world problem, namely patient admission scheduling.
We introduce an evolutionary algorithm to achieve structural diversity in a set of solutions subjected to the quality of each solution.
arXiv Detail & Related papers (2022-07-28T14:26:45Z) - Evolutionary Diversity Optimisation for The Traveling Thief Problem [11.590506672325668]
We introduce a bi-level evolutionary algorithm to maximise the structural diversity of the set of solutions.
We empirically determine the best method to obtain diversity.
Our experimental results show a significant improvement of the QD approach in terms of structural diversity for most TTP benchmark instances.
arXiv Detail & Related papers (2022-04-06T10:13:55Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
We show that multiobjective optimization does not always produce much diversity, multimodal optimization produces higher fitness solutions, and quality diversity is not sensitive to genetic neutrality.
An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set with quality diversity.
arXiv Detail & Related papers (2021-05-10T10:39:03Z) - Entropy-Based Evolutionary Diversity Optimisation for the Traveling
Salesperson Problem [11.590506672325668]
We employ a population diversity measure, called the high-order entropy measure, in an evolutionary algorithm to compute a diverse set of high-quality solutions for the Traveling Salesperson Problem.
We show significant improvements compared to a recently proposed edge-based diversity optimisation approach when working with a large population of solutions or long segments.
arXiv Detail & Related papers (2021-04-28T02:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.