Nonclassical Attack on a Quantum KeyDistribution System
- URL: http://arxiv.org/abs/2104.13720v1
- Date: Wed, 28 Apr 2021 11:49:52 GMT
- Title: Nonclassical Attack on a Quantum KeyDistribution System
- Authors: Anton Pljonkin, Dmitry Petrov, Lilia Sabantina, Kamila Dakhkilgova
- Abstract summary: The article is focused on research of an attack on the quantum key distribution system and proposes a countermeasure method.
Results of the research show that quantum key distribution systems have vulnerabilities not only in the protocols, but also in other vital system components.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The article is focused on research of an attack on the quantum key
distribution system and proposes a countermeasure method. Particularly
noteworthy is that this is not a classic attack on a quantum protocol. We
describe an attack on the process of calibration. Results of the research show
that quantum key distribution systems have vulnerabilities not only in the
protocols, but also in other vital system components. The described type of
attack does not affect the cryptographic strength of the received keys and does
not point to the vulnerability of the quantum key distribution protocol. We
also propose a method for autocompensating optical communication system
development, which protects synchronization from unauthorized access. The
proposed method is based on the use of sync pulses attenuated to a photon level
in the process of detecting a time interval with a signal. The paper presents
the results of experimental studies that show the discrepancies between the
theoretical and real parameters of the system. The obtained data allow the
length of the quantum channel to be calculated with high accuracy.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
A proof of quantumness is an efficiently verifiable interactive test that an efficient quantum computer can pass.
Existing single-round protocols require large quantum circuits, whereas multi-round ones use smaller circuits but require experimentally challenging mid-circuit measurements.
We construct efficient single-round proofs of quantumness based on existing knowledge assumptions.
arXiv Detail & Related papers (2024-05-24T17:33:10Z) - Towards practical quantum position verification [0.0]
We discuss protocols for quantum position verification schemes based on the standard quantum cryptographic assumption that a tagging device can keep classical data secure.
Our schemes use a classical key replenished by quantum key distribution.
The security of classical data makes the schemes secure against non-local spoofing attacks.
arXiv Detail & Related papers (2023-09-18T18:36:16Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Secure Key from Quantum Discord [22.97866257572447]
We show how to make use of discord to analyze security in a specific quantum cryptography protocol.
Our method is robust against imperfections in qubit sources and qubit measurements as well as basis misalignment due to quantum channels.
arXiv Detail & Related papers (2023-04-12T14:21:49Z) - Quantum Public Key Distribution using Randomized Glauber States [0.0]
State-of-the-art Quantum Key Distribution (QKD) is based on the uncertainty principle of qubits on quantum measurements.
We propose a novel quantum key distribution mechanism over a pure optical channel using randomized Glauber states.
arXiv Detail & Related papers (2023-02-15T14:12:52Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimental quantum key distribution certified by Bell's theorem [0.0]
cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
arXiv Detail & Related papers (2021-09-29T17:52:48Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.