Towards practical quantum position verification
- URL: http://arxiv.org/abs/2309.10070v2
- Date: Sun, 12 Nov 2023 23:43:16 GMT
- Title: Towards practical quantum position verification
- Authors: George Cowperthwaite, Adrian Kent and Damian Pitalua-Garcia
- Abstract summary: We discuss protocols for quantum position verification schemes based on the standard quantum cryptographic assumption that a tagging device can keep classical data secure.
Our schemes use a classical key replenished by quantum key distribution.
The security of classical data makes the schemes secure against non-local spoofing attacks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss protocols for quantum position verification schemes based on the
standard quantum cryptographic assumption that a tagging device can keep
classical data secure [Kent, 2011]. Our schemes use a classical key replenished
by quantum key distribution. The position verification requires no quantum
communication or quantum information processing. The security of classical data
makes the schemes secure against non-local spoofing attacks that apply to
schemes that do not use secure tags. The schemes are practical with current
technology and allow for errors and losses. We describe how a
proof-of-principle demonstration might be carried out.
Related papers
- Classical-Quantum Dual Encoding for Laser Communications in Space [0.8972186395640676]
In typical laser communications classical information is encoded by modulating the amplitude of the laser beam and measured via direct detection.
We consider a simultaneous classical-quantum communication scheme where the classical information is encoded in the usual way and the quantum information is encoded as fluctuations of a sub-Poissonian noise-floor.
arXiv Detail & Related papers (2024-04-19T03:07:58Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Improving the performance of quantum cryptography by using the
encryption of the error correction data [0.0]
We introduce the idea of encrypting classical communication related to error-correction in order to decrease the amount of information available to the eavesdropper.
We analyze the applicability of the method in the context of additional assumptions concerning the eavesdropper's quantum memory coherence time.
arXiv Detail & Related papers (2023-06-21T15:42:54Z) - Secure Key from Quantum Discord [22.97866257572447]
We show how to make use of discord to analyze security in a specific quantum cryptography protocol.
Our method is robust against imperfections in qubit sources and qubit measurements as well as basis misalignment due to quantum channels.
arXiv Detail & Related papers (2023-04-12T14:21:49Z) - Experimental quantum key distribution certified by Bell's theorem [0.0]
cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
arXiv Detail & Related papers (2021-09-29T17:52:48Z) - Nonclassical Attack on a Quantum KeyDistribution System [0.0]
The article is focused on research of an attack on the quantum key distribution system and proposes a countermeasure method.
Results of the research show that quantum key distribution systems have vulnerabilities not only in the protocols, but also in other vital system components.
arXiv Detail & Related papers (2021-04-28T11:49:52Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.