Analogue gravity simulation of superpositions of spacetimes
- URL: http://arxiv.org/abs/2104.15078v2
- Date: Mon, 5 Sep 2022 14:02:17 GMT
- Title: Analogue gravity simulation of superpositions of spacetimes
- Authors: Carlos Barcel\'o, Luis J. Garay, Gerardo Garc\'ia-Moreno
- Abstract summary: We present an analogue toy model consisting of a Bose-Einstein condensate in a double-well potential.
We identify the states that could potentially be interpreted as superposition of effective spacetimes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Taking the principles of quantum mechanics as they stand and applying them to
gravity, leads to the conclusion that one might be able to generate
superpositions of spacetimes, at least formally. We analyze such a possibility
from an analogue gravity perspective. We present an analogue toy model
consisting of a Bose-Einstein condensate in a double-well potential and
identify the states that could potentially be interpreted as superposition of
effective spacetimes. These states are unstable and the source of instability
from a microscopic point of view can be related to the absence of a
well-defined causal structure in the effective geometric description. We
explore the consequences of these instabilities and argue that they resonate
with Penrose's ideas about the decay that superpositions of states with
sufficiently different gravitational fields associated should experience.
Related papers
- On Gravity Implication in the Wavefunction Collapse [0.0]
We investigate the stability of the spatial superposition of a massive quantum state under the gravity effect.
We reveal that the gravitational self-interaction between the different spacetime curvatures created by the eigenstate effective masses leads to the reduction of the superposed state to one of the possible localized states.
arXiv Detail & Related papers (2024-11-07T17:18:45Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Relativity and decoherence of spacetime superpositions [0.0]
In a theory of quantum gravity there exist quantum superpositions of semiclassical states of spacetime geometry.
In this paper we introduce a framework for describing such ''quantum superpositions of spacetime states''
We show that for states in which the superposed amplitudes differ by a coordinate transformation, it is always possible to re-express the scenario in terms of dynamics on a single, fixed background.
arXiv Detail & Related papers (2023-02-07T05:10:52Z) - Strongly incoherent gravity [0.0]
A non-entangling version of an arbitrary two-body potential $V(r)$ arises from local measurements and feedback forces.
This produces a non-relativistic model of gravity with fundamental loss of unitarity.
As an alternative to testing entanglement properties, we show that the entire remaining parameter space can be tested by looking for loss of quantum coherence in small systems.
arXiv Detail & Related papers (2023-01-20T01:09:12Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Conditions for graviton emission in the recombination of a delocalized
mass [91.3755431537592]
In a known gedanken experiment, a delocalized mass is recombined while the gravitational field sourced by it is probed by another (distant) particle.
Here, we focus on the delocalized particle and explore the conditions (in terms of mass, separation, and recombination time) for graviton emission.
arXiv Detail & Related papers (2022-09-21T13:51:27Z) - Emerging (2+1)D massive graviton in graphene-like systems [0.0]
Quantum aspects of gravity, such as massive gravitons, can emerge in experiments with fractional quantum Hall liquids.
We employ (2+1)-dimensional Dirac fermions, emerging in the continuous limit of a fermionic honeycomb lattice, coupled to massive gravitons, simulated by bosonic modes.
The similarity of our approach to current optical lattice configurations suggests that quantum signatures of gravity can be simulated in the laboratory in the near future.
arXiv Detail & Related papers (2021-09-15T19:37:29Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Squeezed coherent states for gravitational well in noncommutative space [0.0]
We have studied the quantum gravitational well (GW) under the shed of noncommutative (NC) space.
We have considered both position-position and momentum-momentum noncommutativity.
We have shown that the solutions of the time-dependent Schr"odinger equation are squeezed-coherent states.
arXiv Detail & Related papers (2020-06-20T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.