論文の概要: Self-Improving Semantic Perception on a Construction Robot
- arxiv url: http://arxiv.org/abs/2105.01595v1
- Date: Tue, 4 May 2021 16:06:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-05 12:47:34.802622
- Title: Self-Improving Semantic Perception on a Construction Robot
- Title(参考訳): 建設ロボットにおける自己改善セマンティック知覚
- Authors: Hermann Blum, Francesco Milano, Ren\'e Zurbr\"ugg, Roland Siegward,
Cesar Cadena, Abel Gawel
- Abstract要約: 本稿では,ロボット上でセマンティクスモデルが継続的に更新され,展開環境に適応するフレームワークを提案する。
そこで本システムは,マルチセンサ知覚と局所化を密結合し,自己教師付き擬似ラベルから継続的に学習する。
- 参考スコア(独自算出の注目度): 6.823936426747797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel robotic system that can improve its semantic perception
during deployment. Contrary to the established approach of learning semantics
from large datasets and deploying fixed models, we propose a framework in which
semantic models are continuously updated on the robot to adapt to the
deployment environments. Our system therefore tightly couples multi-sensor
perception and localisation to continuously learn from self-supervised pseudo
labels. We study this system in the context of a construction robot registering
LiDAR scans of cluttered environments against building models. Our experiments
show how the robot's semantic perception improves during deployment and how
this translates into improved 3D localisation by filtering the clutter out of
the LiDAR scan, even across drastically different environments. We further
study the risk of catastrophic forgetting that such a continuous learning
setting poses. We find memory replay an effective measure to reduce forgetting
and show how the robotic system can improve even when switching between
different environments. On average, our system improves by 60% in segmentation
and 10% in localisation compared to deployment of a fixed model, and it keeps
this improvement up while adapting to further environments.
- Abstract(参考訳): 本稿では,展開中の意味認識を改善するロボットシステムを提案する。
大規模データセットからセマンティクスを学習し,固定モデルをデプロイするという確立したアプローチとは対照的に,セマンティクスモデルがロボット上で継続的に更新され,展開環境に適応するフレームワークを提案する。
そこで本システムは,マルチセンサ知覚と局所化を密結合し,自己教師付き擬似ラベルから継続的に学習する。
本システムは,建物モデルに対する乱雑な環境のLiDARスキャンを登録する建設ロボットの文脈で検討する。
我々の実験は、ロボットのセマンティックな知覚が展開中にどのように改善され、それがLiDARスキャンの散乱をフィルターすることで3Dローカライゼーションにどのように変換されるかを示している。
さらに,このような連続学習環境が成立することを忘れてしまうリスクについても検討する。
メモリリプレイは、忘れることを減らす効果的な手段であり、異なる環境を切り替えてもロボットシステムがいかに改善できるかを示す。
本システムでは, 固定モデルの展開に比べて, セグメンテーションの60%, ローカライゼーションの10%が向上し, さらなる環境に適応しつつ, この改善を維持できる。
関連論文リスト
- AdaCropFollow: Self-Supervised Online Adaptation for Visual Under-Canopy Navigation [31.214318150001947]
アンダーキャノピー農業ロボットは、精密なモニタリング、スプレー、雑草、植物操作などの様々な応用を可能にする。
本稿では,視覚的基礎モデル,幾何学的事前,擬似ラベリングを用いて意味キーポイント表現を適応するための自己教師付きオンライン適応手法を提案する。
これにより、人間による介入を必要とせずに、畑や作物をまたがるアンダーキャノピーロボットの完全な自律的な行追尾が可能になる。
論文 参考訳(メタデータ) (2024-10-16T09:52:38Z) - Learning to navigate efficiently and precisely in real environments [14.52507964172957]
Embodied AIの文献は、HabitatやAI-Thorといったシミュレータで訓練されたエンドツーエンドエージェントに焦点を当てている。
本研究では,sim2realのギャップを最小限に抑えたシミュレーションにおけるエージェントのエンドツーエンドトレーニングについて検討する。
論文 参考訳(メタデータ) (2024-01-25T17:50:05Z) - IR-MCL: Implicit Representation-Based Online Global Localization [31.77645160411745]
本稿では,室内環境におけるロボットの姿勢を2次元LiDARデータを用いて推定する問題に対処する。
ニューラルネットワークを用いてシーンを暗黙的に表現するためのニューラルネットワーク占有場(NOF)を提案する。
本研究では,最先端手法のローカライズ性能を超越したアプローチを用いて,ロボットを高精度かつ効率的にローカライズできることを示す。
論文 参考訳(メタデータ) (2022-10-06T17:59:08Z) - SCIM: Simultaneous Clustering, Inference, and Mapping for Open-World
Semantic Scene Understanding [34.19666841489646]
本研究では,ロボットが未知の環境を探索する際に,新しいセマンティッククラスを自律的に発見し,既知のクラスの精度を向上させる方法を示す。
セグメンテーションモデルを更新するための自己教師付き学習信号を生成するために,マッピングとクラスタリングのための一般的なフレームワークを開発する。
特に、デプロイ中にクラスタリングパラメータをどのように最適化するかを示し、複数の観測モダリティの融合が、以前の作業と比べて新しいオブジェクト発見を改善することを示す。
論文 参考訳(メタデータ) (2022-06-21T18:41:51Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
本研究では,都市環境を横断する移動ロボットの局所的な地形を再構築する学習手法を提案する。
搭載されたカメラとロボットの軌道からの深度測定のストリームを用いて、ロボットの近傍の地形を推定する。
ノイズ測定とカメラ配置の盲点からの大量の欠落データにもかかわらず,シーンを忠実に再構築する3次元再構成モデルを提案する。
論文 参考訳(メタデータ) (2022-06-16T10:45:17Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multiは、最初のマルチロボットシステムであり、不正なインターループとイントラロボットループの閉鎖を識別し拒否することができる。
我々は、フォトリアリスティックシミュレーション、SLAMベンチマークデータセット、地上ロボットを用いて収集された屋外データセットの挑戦において、Kimera-Multiを実証した。
論文 参考訳(メタデータ) (2021-06-28T03:56:40Z) - Language Understanding for Field and Service Robots in a Priori Unknown
Environments [29.16936249846063]
本稿では,フィールドロボットとサービスロボットによる自然言語命令の解釈と実行を可能にする,新しい学習フレームワークを提案する。
自然言語の発話において、空間的、位相的、意味的な情報を暗黙的に推測する。
本研究では,この分布を確率論的言語基底モデルに組み込んで,ロボットの行動空間のシンボル表現上の分布を推定する。
論文 参考訳(メタデータ) (2021-05-21T15:13:05Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。