論文の概要: SCIM: Simultaneous Clustering, Inference, and Mapping for Open-World
Semantic Scene Understanding
- arxiv url: http://arxiv.org/abs/2206.10670v1
- Date: Tue, 21 Jun 2022 18:41:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-23 16:23:01.970350
- Title: SCIM: Simultaneous Clustering, Inference, and Mapping for Open-World
Semantic Scene Understanding
- Title(参考訳): SCIM: オープンワールドセマンティックシーン理解のための同時クラスタリング,推論,マッピング
- Authors: Hermann Blum, Marcus G. M\"uller, Abel Gawel, Roland Siegwart, Cesar
Cadena
- Abstract要約: 本研究では,ロボットが未知の環境を探索する際に,新しいセマンティッククラスを自律的に発見し,既知のクラスの精度を向上させる方法を示す。
セグメンテーションモデルを更新するための自己教師付き学習信号を生成するために,マッピングとクラスタリングのための一般的なフレームワークを開発する。
特に、デプロイ中にクラスタリングパラメータをどのように最適化するかを示し、複数の観測モダリティの融合が、以前の作業と比べて新しいオブジェクト発見を改善することを示す。
- 参考スコア(独自算出の注目度): 34.19666841489646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to operate in human environments, a robot's semantic perception has
to overcome open-world challenges such as novel objects and domain gaps.
Autonomous deployment to such environments therefore requires robots to update
their knowledge and learn without supervision. We investigate how a robot can
autonomously discover novel semantic classes and improve accuracy on known
classes when exploring an unknown environment. To this end, we develop a
general framework for mapping and clustering that we then use to generate a
self-supervised learning signal to update a semantic segmentation model. In
particular, we show how clustering parameters can be optimized during
deployment and that fusion of multiple observation modalities improves novel
object discovery compared to prior work.
- Abstract(参考訳): 人間の環境で動作するためには、ロボットの意味認識は、新しいオブジェクトやドメイン間隙といったオープンワールドの課題を克服しなければならない。
そのため、そのような環境への自律的なデプロイメントでは、ロボットは知識を更新し、監督なしに学習する必要がある。
ロボットが新しい意味クラスを自律的に発見し、未知の環境を探索する際の既知のクラスの精度を向上させる方法について検討する。
そこで我々は,意味的セグメンテーションモデルを更新するための自己教師付き学習信号を生成するために,マッピングとクラスタリングのための汎用フレームワークを開発した。
特に,デプロイ中にクラスタリングパラメータを最適化する方法を示し,複数の観測モードを融合することで,これまでの作業と比較して新たなオブジェクト発見が向上することを示す。
関連論文リスト
- Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [65.23793829741014]
Embodied-RAGは、非パラメトリックメモリシステムによるエンボディエージェントのモデルを強化するフレームワークである。
コアとなるEmbodied-RAGのメモリはセマンティックフォレストとして構成され、言語記述を様々なレベルで詳細に保存する。
Embodied-RAGがRAGをロボット領域に効果的にブリッジし、200以上の説明とナビゲーションクエリをうまく処理できることを実証する。
論文 参考訳(メタデータ) (2024-09-26T21:44:11Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Semi-Supervised Active Learning for Semantic Segmentation in Unknown
Environments Using Informative Path Planning [27.460481202195012]
ロボットの視力を改善するために、自己監督的で完全に教師された能動学習手法が出現した。
セマンティックセグメンテーションの半教師付き能動学習のための計画法を提案する。
我々は、モデル不確実性の高い未探索空間のフロンティアに向けて導かれた適応地図ベースのプランナーを活用する。
論文 参考訳(メタデータ) (2023-12-07T16:16:47Z) - Robot Skill Generalization via Keypoint Integrated Soft Actor-Critic
Gaussian Mixture Models [21.13906762261418]
ロボット操作システムの長年の課題は、取得したモータースキルを、目に見えない環境に適応させ、一般化することだ。
我々は、模倣と強化のパラダイムを統合するハイブリッドスキルモデルを用いて、この課題に取り組む。
提案手法は,ロボットが新規環境への大幅なゼロショット一般化を実現し,目標環境におけるスキルをスクラッチから学習するよりも早く洗練することができることを示す。
論文 参考訳(メタデータ) (2023-10-23T16:03:23Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
本稿では,映像ストリーム中のピクセルワイズ表現を段階的かつ自律的に開発するための,ニューラルネットワークに基づく新しいアプローチを提案する。
提案手法は, 参加者の入場地を観察することで, エージェントが学習できる, 人間の様の注意機構に基づく。
実験では,3次元仮想環境を利用して,映像ストリームを観察することで,エージェントが物体の識別を学べることを示す。
論文 参考訳(メタデータ) (2022-04-26T09:52:31Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
HARPS(Human Assisted Robotic Planning and Sensing)フレームワークは、ロボットチームにおけるアクティブなセマンティックセンシングと計画のためのフレームワークである。
このアプローチにより、人間が不規則にモデル構造を強制し、不確実な環境で意味的なソフトデータの範囲を拡張することができる。
大規模部分構造環境におけるUAV対応ターゲット探索アプリケーションのシミュレーションは、時間と信念状態の推定において著しく改善されている。
論文 参考訳(メタデータ) (2021-10-20T00:41:57Z) - Language Understanding for Field and Service Robots in a Priori Unknown
Environments [29.16936249846063]
本稿では,フィールドロボットとサービスロボットによる自然言語命令の解釈と実行を可能にする,新しい学習フレームワークを提案する。
自然言語の発話において、空間的、位相的、意味的な情報を暗黙的に推測する。
本研究では,この分布を確率論的言語基底モデルに組み込んで,ロボットの行動空間のシンボル表現上の分布を推定する。
論文 参考訳(メタデータ) (2021-05-21T15:13:05Z) - Self-Improving Semantic Perception on a Construction Robot [6.823936426747797]
本稿では,ロボット上でセマンティクスモデルが継続的に更新され,展開環境に適応するフレームワークを提案する。
そこで本システムは,マルチセンサ知覚と局所化を密結合し,自己教師付き擬似ラベルから継続的に学習する。
論文 参考訳(メタデータ) (2021-05-04T16:06:12Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
モデルに基づく視覚的目標達成のための自己監視手法を提案する。
私たちのアプローチは、オフラインでラベルなしのデータを使って完全に学習します。
このアプローチは,モデルフリーとモデルベース先行手法の両方で大幅に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T23:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。