論文の概要: Dataset Bias in the Natural Sciences: A Case Study in Chemical Reaction
Prediction and Synthesis Design
- arxiv url: http://arxiv.org/abs/2105.02637v1
- Date: Thu, 6 May 2021 13:11:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 13:13:27.066604
- Title: Dataset Bias in the Natural Sciences: A Case Study in Chemical Reaction
Prediction and Synthesis Design
- Title(参考訳): 自然科学におけるデータセットバイアス--化学反応予測と合成設計の事例研究
- Authors: Ryan-Rhys Griffiths, Philippe Schwaller, Alpha A. Lee
- Abstract要約: 化学反応予測と合成設計の分野における方向変化を必要とする3つのトレンドを同定する。
まず、反応データセットを反応物質と試薬に分解する方法は、非現実的な寛大な方法でテストモデルを奨励する。
第2に,誤記データの発生状況に注目し,データ適合性ではなく,異常除去に重点を置くべきであることを示唆する。
- 参考スコア(独自算出の注目度): 0.8594140167290099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Datasets in the Natural Sciences are often curated with the goal of aiding
scientific understanding and hence may not always be in a form that facilitates
the application of machine learning. In this paper, we identify three trends
within the fields of chemical reaction prediction and synthesis design that
require a change in direction. First, the manner in which reaction datasets are
split into reactants and reagents encourages testing models in an
unrealistically generous manner. Second, we highlight the prevalence of
mislabelled data, and suggest that the focus should be on outlier removal
rather than data fitting only. Lastly, we discuss the problem of reagent
prediction, in addition to reactant prediction, in order to solve the full
synthesis design problem, highlighting the mismatch between what machine
learning solves and what a lab chemist would need. Our critiques are also
relevant to the burgeoning field of using machine learning to accelerate
progress in experimental Natural Sciences, where datasets are often split in a
biased way, are highly noisy, and contextual variables that are not evident
from the data strongly influence the outcome of experiments.
- Abstract(参考訳): 自然科学のデータセットは、科学的な理解を支援することを目的として、しばしばキュレーションされるため、機械学習の応用を促進する形式であるとは限らない。
本稿では,化学反応予測と合成設計の分野における方向変化を必要とする3つの傾向を明らかにする。
まず、反応データセットを反応物質と試薬に分解する方法は、非現実的な寛大な方法でテストモデルを奨励する。
第2に,誤記データの発生状況に注目し,データ適合性ではなく,異常除去に重点を置くべきであることを示唆する。
最後に, 反応予測に加えて試薬予測の問題についても議論し, 完全な合成設計問題を解決するために, 機械学習が解くものと実験室化学者が必要とするものとのミスマッチを浮き彫りにする。
我々の批判は、データセットがしばしばバイアスのある方法で分割される実験自然科学の進歩を加速するために機械学習を使うことの急成長分野にも関係しており、データから明らかでない文脈変数が実験結果に強く影響している。
関連論文リスト
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
本稿では,様々な有機反応関連タスクに適した新しい化学反応表現学習モデルであるモデルネームを紹介する。
反応物質と生成物との原子対応を統合することにより、反応中に生じる分子変換を識別し、反応機構の理解を深める。
反応条件を化学反応表現に組み込むアダプタ構造を設計し、様々な反応条件を処理し、様々なデータセットや下流タスク、例えば反応性能予測に適応できるようにした。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - SynCoTrain: A Dual Classifier PU-learning Framework for Synthesizability Prediction [0.0]
素材の合成可能性を予測するための半教師付き機械学習モデルであるSynCoTrainを提案する。
我々のアプローチでは、明示的な負のデータがないことに対処するために、肯定的および非ラベル付き学習(PU)を用いています。
モデルは堅牢なパフォーマンスを示し、内部および離脱テストセットで高いリコールを達成する。
論文 参考訳(メタデータ) (2024-11-18T19:53:19Z) - log-RRIM: Yield Prediction via Local-to-global Reaction Representation Learning and Interaction Modeling [6.310759215182946]
log-RRIMは、化学反応の収量を予測するために設計された革新的なグラフトランスフォーマーベースのフレームワークである。
本手法は,一意の局所的-グローバル的反応表現学習戦略を実装している。
反応剤-試薬相互作用の高度なモデリングと小さな分子断片への感受性により、化学合成における反応計画と最適化のための貴重なツールとなる。
論文 参考訳(メタデータ) (2024-10-20T18:35:56Z) - Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
本稿では, 治療効果推定の因果推論タスクについて検討し, 高次元観察において利害関係が記録されている。
最先端の視覚バックボーンから微調整した6つの480モデルを比較し、サンプリングとモデリングの選択が因果推定の精度に大きく影響することを発見した。
以上の結果から,今後のベンチマークでは,下流の科学的問題,特に因果的な問題について慎重に検討すべきであることが示唆された。
論文 参考訳(メタデータ) (2024-05-27T13:26:34Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
RetroWISEは,実データから推定されるベースモデルを用いて,シリコン内反応の生成と増大を行うフレームワークである。
3つのベンチマークデータセットで、RetroWISEは最先端モデルに対して最高の全体的なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-31T07:40:37Z) - ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision [27.850325653751078]
構造化化学反応情報は、実験とコンピュータ支援医薬品設計のような先進的な取り組みに携わる化学者にとって重要な役割を担っている。
科学的文献から構造的反応を抽出することが重要であるにもかかわらず、この目的のためのデータアノテーションは、ドメインの専門家が必要とする多大な労力のためにコストを抑えることができる。
本稿では,2つの弱教師付き事前学習手法を組み合わせたReactIEを提案する。本手法では,テキスト内の頻繁なパターンを言語的手がかりとして用いて,化学反応の特異な特性を同定する。
論文 参考訳(メタデータ) (2023-07-04T02:52:30Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
本研究は,簡単な学習セットから複雑な露光の学習近似を提案する。
合成センサ応答に対するこのアプローチは, 分布外の化学分析物の検出を驚くほど改善することを示した。
論文 参考訳(メタデータ) (2023-02-09T20:19:57Z) - Rxn Hypergraph: a Hypergraph Attention Model for Chemical Reaction
Representation [70.97737157902947]
現在、化学反応を強固に表現するための普遍的で広く採用されている方法は存在しない。
ここでは、グラフに基づく分子構造の表現を利用して、ハイパーグラフアテンションニューラルネットワークアプローチを開発し、テストする。
我々はこのハイパーグラフ表現を3つの独立な化学反応データセットを用いて3つの実験で評価した。
論文 参考訳(メタデータ) (2022-01-02T12:33:10Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
本稿では,データセットから化学的に間違ったエントリを除去するための,機械学習に基づく無支援アプローチを提案する。
その結果,クリーン化およびバランスの取れたデータセットでトレーニングしたモデルの予測精度が向上した。
論文 参考訳(メタデータ) (2021-02-02T09:34:34Z) - Data Transfer Approaches to Improve Seq-to-Seq Retrosynthesis [1.6449390849183363]
再合成は、化学反応によって与えられた生成物化合物を合成するために反応化合物を推測する問題である。
レトロ合成に関する最近の研究は、より洗練された予測モデルの提案に焦点を当てている。
モデルをフィードするデータセットは、最高の一般化モデルを達成する上でも重要な役割を果たす。
論文 参考訳(メタデータ) (2020-10-02T05:27:51Z) - Chemical Property Prediction Under Experimental Biases [26.407895054724452]
本研究は,実験データセットにおけるバイアス軽減に焦点を当てた。
我々は因果推論とグラフニューラルネットワークを組み合わせた2つの手法を用いて分子構造を表現した。
4つのバイアスシナリオによる実験結果から,逆確率スコアリング法と反実回帰法が確固たる改善をもたらしたことが示唆された。
論文 参考訳(メタデータ) (2020-09-18T08:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。