論文の概要: Full-Dimensional Schr\"odinger Wavefunction Calculations using Tensors
and Quantum Computers: the Cartesian component-separated approach
- arxiv url: http://arxiv.org/abs/2105.03787v1
- Date: Sat, 8 May 2021 21:54:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-01 03:20:32.215600
- Title: Full-Dimensional Schr\"odinger Wavefunction Calculations using Tensors
and Quantum Computers: the Cartesian component-separated approach
- Title(参考訳): テンソルと量子コンピュータを用いた全次元schr\"odinger波動関数計算:デカルト成分分離法
- Authors: Bill Poirier and Jonathan Jerke
- Abstract要約: 我々は、粒子ではなく、カルト成分による分離性に基づいて、根本的に異なるアプローチを探求する。
このアプローチは、量子化学における3Dグリッドベースの手法に非常に適しているようである。
本稿では,量子ビット数と量子ゲート数の両方を削減できる量子コンピュータの実装について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional methods in quantum chemistry rely on Hartree-Fock-based
Slater-determinant (SD) representations, whose underlying zeroth-order picture
assumes separability by particle. Here, we explore a radically different
approach, based on separability by Cartesian component, rather than by particle
[J. Chem. Phys., 2018, 148, 104101]. The approach appears to be very well
suited for 3D grid-based methods in quantum chemistry, and thereby also for
so-called "first-quantized" quantum computing. We first present an overview of
the approach as implemented on classical computers, including numerical results
that justify performance claims. In particular, we perform numerical
calculations with four explicit electrons that are equivalent to full-CI matrix
diagonalization with nearly $10^{15}$ SDs. We then present an implementation
for quantum computers, for which both the number of qubits, and the number of
quantum gates, may be substantially reduced in comparison with other quantum
circuitry that has been envisioned for implementing first-quantized "quantum
computational chemistry" (QCC).
- Abstract(参考訳): 従来の量子化学の手法はハートリーフォックに基づくSlater-Determinant (SD)表現に依存しており、その基礎となるゼロ階画像は粒子による分離性を前提としている。
ここでは,粒子[j. chem. phys., 2018, 148, 104101]ではなく,デカルト成分による分離性に基づいて,根本的に異なるアプローチを探求する。
このアプローチは、量子化学における3Dグリッドベースの手法や、いわゆる「第一量子化」量子コンピューティングにも非常に適しているようである。
まず,従来のコンピュータに実装した手法の概要を述べるとともに,性能の主張を正当化するための数値結果について述べる。
特に、全CI行列対角化と同等の4つの明示電子を持つ数値計算を、約10^{15}$ SDで行う。
次に、量子コンピュータの実装について、量子ビット数と量子ゲート数の両方を第一量子化量子計算化学(QCC)の実装のために想定された他の量子回路と比較して、大幅に削減することができることを示す。
関連論文リスト
- Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
我々は、捕捉されたイオン量子ハードウェア上で、工業的に関係があり、強く相関する金属キレートの活性空間ハミルトニアンの最低エネルギー固有値を算出する。
量子ハードウェア上で変分量子アルゴリズムを訓練し,次に量子回路の出力として測定された状態の部分空間における古典的対角化を施すことにより,化学的精度を実現することができる。
論文 参考訳(メタデータ) (2024-08-20T12:50:15Z) - Quantum Simulations of Chemistry in First Quantization with any Basis Set [0.0]
分子や物質のエネルギーの量子計算は、フォールトトレラント量子コンピュータの最も有望な応用の1つである。
それまでの研究は、主に第2量子化におけるシステムのハミルトニアンを表している。
本稿では,任意の基底集合を用いたフォールトトレラント量子コンピュータ上での第一量子化における一般基底状態化学問題の解法を提案する。
これにより、現代の量子化学基底集合を用いた活性空間での計算が可能となる。
論文 参考訳(メタデータ) (2024-08-06T12:40:32Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
本稿では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
提案手法は,従来の計算オーバーヘッドを低減し,CNOTおよびTゲートの数を平均で28%,57%削減する。
論文 参考訳(メタデータ) (2024-06-17T14:10:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer [2.562863293556441]
普遍量子コンピュータは、様々な量子システムの特性を予測できるシミュレータとして使用できる。
化学における電子構造問題は、100ビットのマークを囲む実用的なユースケースを提供する。
プリフォールト耐性量子プロセッサでは、分子エネルギーを見積もる多数の測定値が、禁忌のランタイムに繋がる。
論文 参考訳(メタデータ) (2024-05-08T14:08:07Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
ディジタル量子コンピュータ上で状態の密度を推定する量子アルゴリズムを実装した。
我々は,量子H1-1トラップイオンチップ上での非可積分ハミルトニアン状態の密度を18ビットの制御レジスタに対して推定する。
論文 参考訳(メタデータ) (2023-03-23T17:46:28Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
量子コンピューティングと量子モンテカルロを統合したハイブリッド量子古典アルゴリズムを提案する。
我々の研究は、中間スケールおよび早期フォールト耐性量子コンピュータで現実的な問題を解決するための道を開いた。
論文 参考訳(メタデータ) (2022-06-21T14:26:24Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
特定の演算を行うユニタリ行列が与えられた場合、等価な量子回路を得るのは非自明な作業である。
量子ウォーカーのコイン、トフォリゲート、フレドキンゲートの3つの問題が研究されている。
提案したアルゴリズムは量子回路の分解に効率的であることが証明され、汎用的なアプローチとして、利用可能な計算力によってのみ制限される。
論文 参考訳(メタデータ) (2021-06-06T13:15:25Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Hybrid Quantum-Classical Eigensolver Without Variation or Parametric
Gates [0.0]
本稿では,電子量子系の固有エネルギースペクトルを得る方法を提案する。
これは、量子系のハミルトニアンを有限有効ヒルベルト空間に射影することで達成される。
実効ハミルトニアンの対応する対角線および対角線の項を測定するための短深さ量子回路を作成するプロセスを与える。
論文 参考訳(メタデータ) (2020-08-26T02:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。