論文の概要: Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions
- arxiv url: http://arxiv.org/abs/2411.16915v2
- Date: Mon, 19 May 2025 09:26:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 17:08:51.652298
- Title: Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions
- Title(参考訳): 対称性保存コスト関数による変分量子部分空間の構築
- Authors: Hamzat A. Akande, Alexandre Perrin, Bruno Senjean, Matthieu Saubanere,
- Abstract要約: 低次エネルギー状態の抽出のための削減部分空間を反復的に構築するために,対称性保存コスト関数に基づく変動戦略を提案する。
概念実証として, 基底状態エネルギーと電荷ギャップの両方を対象とし, 提案アルゴリズムをH4鎖とリング上で検証した。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining low-energy eigenstates in electronic many-body quantum systems is a key challenge in computational chemistry and condensed-matter physics. Hybrid quantum-classical approaches, such as the Variational Quantum Eigensolver and Quantum Subspace Methods, offer practical solutions but face limitations in circuit depth and measurement overhead. In this article, we propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for the extraction of low-lying energy states. We show that, under certain conditions, our approach leads to a tridiagonal representation similar to that obtained with the Lanczos algorithm. The iterative process allows control over the trade-off between circuit depth, the number of variational parameters, and the number of measurements required to achieve the desired accuracy, making it suitable for current quantum hardware. As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
- Abstract(参考訳): 電子多体量子系における低エネルギー固有状態の決定は、計算化学と凝縮物質物理学における重要な課題である。
変分量子固有解法や量子部分空間法のようなハイブリッド量子古典的アプローチは、実用的な解決策を提供するが、回路深さと測定オーバーヘッドの制限に直面している。
本稿では,低次エネルギー状態の抽出のための削減部分空間を反復的に構築するために,対称性保存コスト関数に基づく変動戦略を提案する。
我々は,ある条件下では,Lanczosアルゴリズムに類似した三対角表現を導出することを示す。
繰り返し処理により、回路深さ、変動パラメータの数、所望の精度を達成するのに必要な測定数とのトレードオフを制御でき、現在の量子ハードウェアに適している。
概念実証として, 基底状態エネルギーと電荷ギャップの両方を対象とし, 提案アルゴリズムをH4鎖とリング上で検証した。
関連論文リスト
- QAdaPrune: Adaptive Parameter Pruning For Training Variational Quantum Circuits [2.3332157823623403]
emphQAdaPruneは適応パラメータのプルーニングアルゴリズムで、しきい値を自動的に決定し、冗長パラメータと非パフォーマンスパラメータをインテリジェントにプルーする。
得られたスパースパラメータ集合は、未計算の量子回路と同等に動作する量子回路を生成する。
論文 参考訳(メタデータ) (2024-08-23T19:57:40Z) - Qubit-efficient quantum combinatorial optimization solver [0.0]
そこで我々は,候補ビット解をより少ない量子ビットの絡み合った波動関数にマッピングすることで,制限を克服する量子ビット効率のアルゴリズムを開発した。
このアプローチは、短期的な中間スケールと将来のフォールトトレラントな小規模量子デバイスに有効である。
論文 参考訳(メタデータ) (2024-07-22T11:02:13Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
本稿では,変分量子アルゴリズム(VQA)の量子回路を分割し,並列トレーニングと実行を可能にする手法を提案する。
本稿では,この問題からの固有構造を同定可能な最適化問題に適用する。
我々は,本手法がより大きな問題に対処できるだけでなく,1つのスライスのみを用いてパラメータをトレーニングしながら,完全なVQAモデルを実行することもできることを示した。
論文 参考訳(メタデータ) (2023-04-06T12:52:29Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。