論文の概要: Advancements in Multimodal Differential Evolution: A Comprehensive Review and Future Perspectives
- arxiv url: http://arxiv.org/abs/2504.00717v1
- Date: Tue, 01 Apr 2025 12:30:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:25:45.927218
- Title: Advancements in Multimodal Differential Evolution: A Comprehensive Review and Future Perspectives
- Title(参考訳): マルチモーダル微分進化の進歩 : 概観と今後の展望
- Authors: Dikshit Chauhan, Shivani, Donghwi Jung, Anupam Yadav,
- Abstract要約: マルチモーダル最適化は、関数の複数の大域的および局所的最適化を識別することを含み、探索空間内の多様な最適解に関する貴重な洞察を提供する。
微分進化(DE)は連続したパラメータ空間に対して強力で汎用的である。
マルチモーダル最適化のためのDECの最近の進歩は、ニッチ手法、パラメータ適応、機械学習を含む他のアルゴリズムとのハイブリダイゼーション、および様々な領域にわたる応用に焦点を当てている。
- 参考スコア(独自算出の注目度): 0.6749750044497731
- License:
- Abstract: Multi-modal optimization involves identifying multiple global and local optima of a function, offering valuable insights into diverse optimal solutions within the search space. Evolutionary algorithms (EAs) excel at finding multiple solutions in a single run, providing a distinct advantage over classical optimization techniques that often require multiple restarts without guarantee of obtaining diverse solutions. Among these EAs, differential evolution (DE) stands out as a powerful and versatile optimizer for continuous parameter spaces. DE has shown significant success in multi-modal optimization by utilizing its population-based search to promote the formation of multiple stable subpopulations, each targeting different optima. Recent advancements in DE for multi-modal optimization have focused on niching methods, parameter adaptation, hybridization with other algorithms including machine learning, and applications across various domains. Given these developments, it is an opportune moment to present a critical review of the latest literature and identify key future research directions. This paper offers a comprehensive overview of recent DE advancements in multimodal optimization, including methods for handling multiple optima, hybridization with EAs, and machine learning, and highlights a range of real-world applications. Additionally, the paper outlines a set of compelling open problems and future research issues from multiple perspectives
- Abstract(参考訳): マルチモーダル最適化は、関数の複数の大域的および局所的最適化を識別することを含み、探索空間内の多様な最適解に関する貴重な洞察を提供する。
進化的アルゴリズム(EA)は、単一の実行で複数のソリューションを見つけるのに優れており、多様なソリューションを得る保証なしに、しばしば複数の再起動を必要とする古典的な最適化手法に対して、明確な優位性を提供する。
これらのEAの中で、微分進化(DE)は連続パラメータ空間に対する強力で汎用的な最適化として際立っている。
DEは、その集団に基づく探索を利用して、複数の安定なサブ集団の形成を促進することで、マルチモーダル最適化において大きな成功を収めている。
マルチモーダル最適化のためのDECの最近の進歩は、ニッチ手法、パラメータ適応、機械学習を含む他のアルゴリズムとのハイブリダイゼーション、および様々な領域にわたる応用に焦点を当てている。
これらの発展を考えると、最新の文献に対する批判的なレビューを提示し、今後の研究の方向性を明らかにすることは、絶好の瞬間である。
本稿では、マルチモーダル最適化における最近のDreの進歩の概要を概観し、マルチモーダル最適化の手法、EAとのハイブリッド化、機械学習について述べる。
さらに、複数の観点から、魅力的なオープン問題と今後の研究課題の集合を概説する。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Evolutionary Multi-Objective Diversity Optimization [14.930208990741129]
我々はこの問題を、品質と多様性のトレードオフの幅を求める、双方向最適化問題として扱う。
本稿では,既存の進化的多目的探索手法と互換性のある汎用的な実装手法を提案する。
結果、非支配的な人口は豊かな質的な特徴を示し、最適化事例とそれらが引き起こす品質と多様性のトレードオフについて洞察を与える。
論文 参考訳(メタデータ) (2024-01-15T03:59:42Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
エージェントが隣人としか通信できないネットワーク上での分散マルチレベル最適化の問題について検討する。
ネットワーク化されたエージェントが1つの時間スケールで異なるレベルの最適化問題を解くことができる新しいゴシップに基づく分散マルチレベル最適化アルゴリズムを提案する。
提案アルゴリズムは, ネットワークサイズと線形にスケーリングし, 各種アプリケーション上での最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-10T00:21:10Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
現実の問題は、本質的には複数の最適値からなるマルチモーダルである。
古典的な勾配に基づく手法は、目的関数が不連続あるいは微分不可能な最適化問題に対して失敗する。
我々は,MMOPを解くために,拡張オポポジション微分進化(EODE)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-23T16:18:27Z) - Multi-Objective Quality Diversity Optimization [2.4608515808275455]
MOME(Multi-Objective MAP-Elites)の多目的設定におけるMAP-Elitesアルゴリズムの拡張を提案する。
すなわち、MAP-Elitesグリッドアルゴリズムから受け継いだ多様性と、多目的最適化の強みを組み合わせる。
本手法は,標準的な最適化問題からロボットシミュレーションまで,いくつかのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-07T10:48:28Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
マルチモーダル最適化は高い適合性ソリューションを生み出し、品質の多様性は遺伝的中立性に敏感ではない。
オートエンコーダは表現型特徴を自動的に発見するために使用され、品質の多様性を備えたさらに多様なソリューションセットを生成する。
論文 参考訳(メタデータ) (2021-05-10T10:39:03Z) - Niching Diversity Estimation for Multi-modal Multi-objective
Optimization [9.584279193016522]
ニッチは進化的多目的最適化において重要かつ広く用いられている手法である。
MMOPでは、対象空間の解は決定空間に複数の逆像を持つことができ、これは等価解と呼ばれる。
MMOPの処理において、標準多様性推定器をより効率的にするために、一般的なニチング機構を提案する。
論文 参考訳(メタデータ) (2021-01-31T05:23:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。