論文の概要: Doing Natural Language Processing in A Natural Way: An NLP toolkit based
on object-oriented knowledge base and multi-level grammar base
- arxiv url: http://arxiv.org/abs/2105.05227v1
- Date: Tue, 11 May 2021 17:43:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 15:40:06.156492
- Title: Doing Natural Language Processing in A Natural Way: An NLP toolkit based
on object-oriented knowledge base and multi-level grammar base
- Title(参考訳): 自然言語処理を自然に行う:オブジェクト指向知識ベースと多水準文法ベースに基づくNLPツールキット
- Authors: Yu Guo
- Abstract要約: このツールキットはセマンティック解析に焦点を当てており、新しい知識と文法を自動的に発見する能力もあります。
新たに発見された知識と文法は人間によって識別され、知識ベースと文法ベースの更新に使用される。
- 参考スコア(独自算出の注目度): 2.963359628667052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an NLP toolkit based on object-oriented knowledge base and
multi-level grammar base. This toolkit focuses on semantic parsing, it also has
abilities to discover new knowledge and grammar automatically, new discovered
knowledge and grammar will be identified by human, and will be used to update
the knowledge base and grammar base. This process can be iterated many times to
improve the toolkit continuously.
- Abstract(参考訳): オブジェクト指向知識ベースと多レベル文法ベースに基づくNLPツールキットを提案する。
このツールキットは意味解析に重点を置いており、新しい知識と文法を自動的に発見する能力を持ち、新しい知識と文法は人間によって識別され、知識ベースと文法ベースの更新に使用される。
このプロセスを何度も繰り返してツールキットを継続的に改善できます。
関連論文リスト
- Building Tamil Treebanks [0.0]
ツリーバンクは重要な言語資源であり、豊富な言語アノテーションで構造化され注釈付けされたコーパスである。
本稿では,手動アノテーション,計算文法,機械学習の3つのアプローチを用いて,タミル木バンクの作成について論じる。
論文 参考訳(メタデータ) (2024-09-23T01:58:50Z) - Cross-Lingual Multi-Hop Knowledge Editing -- Benchmarks, Analysis and a Simple Contrastive Learning based Approach [53.028586843468915]
言語横断的な設定で様々なSoTA知識編集技術の性能を計測・解析するための多言語多言語知識編集パラダイムを提案する。
具体的には、知識編集能力を測定するために並列言語間ベンチマーク CROLIN-MQUAKE を作成します。
次に,言語間マルチホップ知識編集システムであるCLEVER-CKEを提案する。
論文 参考訳(メタデータ) (2024-07-14T17:18:16Z) - A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - CMULAB: An Open-Source Framework for Training and Deployment of Natural Language Processing Models [59.91221728187576]
本稿では,NLPモデルのモデル展開と連続的なヒューマン・イン・ザ・ループの微調整を簡単にするオープンソースフレームワークであるCMU言語バックエンドを紹介する。
CMULABは、マルチ言語モデルのパワーを活用して、音声認識、OCR、翻訳、構文解析などの既存のツールを新しい言語に迅速に適応し、拡張することができる。
論文 参考訳(メタデータ) (2024-04-03T02:21:46Z) - Automating Knowledge Acquisition for Content-Centric Cognitive Agents
Using LLMs [0.0]
本稿では,知的エージェントのセマンティックレキシコンにおける新たなエントリの自動学習を支援するために,大規模言語モデル(LLM)技術を利用するシステムについて述べる。
このプロセスは、既存の非トイ辞書と、意味の形式的、存在論的に接地された表現を自然言語文に変換する自然言語生成装置によってブートストラップされる。
論文 参考訳(メタデータ) (2023-12-27T02:31:51Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z) - Knowledge Based Multilingual Language Model [44.70205282863062]
知識に基づく多言語言語モデル(KMLM)を事前学習するための新しいフレームワークを提案する。
我々は、ウィキデータ知識グラフを用いて、大量のコード切替合成文と推論に基づく多言語学習データを生成する。
生成したデータの文内構造と文間構造に基づいて,知識学習を容易にするための事前学習タスクを設計する。
論文 参考訳(メタデータ) (2021-11-22T02:56:04Z) - Natural Language Generation Using Link Grammar for General
Conversational Intelligence [0.0]
Link Grammarデータベースを用いて,文法的に有効な文を自動的に生成する手法を提案する。
この自然言語生成方法は、最先端のベースラインをはるかに上回り、プロトAGI質問応答パイプラインの最終コンポーネントとして機能する。
論文 参考訳(メタデータ) (2021-04-19T06:16:07Z) - Meta-learning for fast cross-lingual adaptation in dependency parsing [16.716440467483096]
言語間依存関係解析のタスクにモデル非依存のメタラーニングを適用する。
事前学習によるメタ学習は,言語伝達の性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-10T11:10:16Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。