論文の概要: On Information-Theoretic Classical Verification of Quantum Computers
- arxiv url: http://arxiv.org/abs/2105.05942v1
- Date: Wed, 12 May 2021 20:10:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 08:34:35.581902
- Title: On Information-Theoretic Classical Verification of Quantum Computers
- Title(参考訳): 量子コンピュータの情報理論古典的検証について
- Authors: Ayal Green
- Abstract要約: この家族のいかなるプロトコルも、非常に強力な証明を必要とすることを示しています。
我々は、証明者がより弱くなりうるプロトコル、すなわち量子コンピュータを実現しようとする可能性があることを示唆する。
- 参考スコア(独自算出の注目度): 0.38073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum inspired protocols e.g. [AAV13,AG17] attempt to achieve a
single-prover interactive protocol where a classical machine can verify quantum
computations in an information-theoretically secure manner. We define a family
of protocols which seem natural for verifying quantum computations and
generalizes such known protocols, namely those of [AAV13,AG17]. We show that
any protocol from this family is bound to require an extremely powerful prover,
much like the classical protocols of [LFKN92] and [Sha92]. Using our analysis,
we also hint at possible ways one might try to realize a protocol where the
prover can be weaker, namely a quantum computer (i.e. a BQP machine).
- Abstract(参考訳): 例えば[aav13,ag17]は、古典的なマシンが情報理論上安全な方法で量子計算を検証できるシングルプロパンインタラクティブプロトコルを実現しようとする。
我々は,量子計算の検証に自然なプロトコル群を定義し,[aav13,ag17]のプロトコルを一般化する。
このファミリーのいかなるプロトコルも、[LFKN92] や [Sha92] の古典的なプロトコルと同様に、非常に強力な証明を必要とする。
我々の分析を用いて、証明者がより弱くなり得るプロトコル、すなわち量子コンピュータ(BQPマシン)を実現する可能性も示唆している。
関連論文リスト
- Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
量子性の証明は、効率的な量子コンピュータが通過できる、効率よく検証可能な対話型テストである。
既存のシングルラウンドプロトコルは大きな量子回路を必要とするが、マルチラウンドプロトコルはより小さな回路を使用するが、実験的な中間回路測定を必要とする。
我々は、既存の知識仮定に基づいて、量子性の効率的なシングルラウンド証明を構築した。
論文 参考訳(メタデータ) (2024-05-24T17:33:10Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
No-Free-Lunch(NFL)定理は、最適化プロセスに関係なく問題とデータ非依存の一般化誤差を定量化する。
我々は、様々な量子学習アルゴリズムを、特定の観測可能条件下で量子力学を学習するために設計された3つの学習プロトコルに分類する。
得られたNFL定理は, CLC-LP, ReQu-LP, Qu-LPにまたがるサンプルの複雑性を2次的に低減することを示した。
この性能差は、非直交量子状態のグローバル位相に関する情報を間接的に活用するために、量子関連学習プロトコルのユニークな能力に起因している。
論文 参考訳(メタデータ) (2024-05-12T09:05:13Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Quantifying protocol efficiency: a thermodynamic figure of merit for
classical and quantum state-transfer protocols [0.0]
ダブルウェルポテンシャルで状態を転送する古典的および量子的プロトコルに焦点を当てる。
古典的なプロトコルはポテンシャルを変形させることで達成され、量子は反断熱駆動によって支援される。
量子プロトコルがより迅速かつ正確に動作することを示す。
論文 参考訳(メタデータ) (2022-12-20T09:19:51Z) - Conference key agreement in a quantum network [67.410870290301]
量子会議鍵契約(QCKA)により、複数のユーザが共有マルチパーティの絡み合った状態からセキュアなキーを確立することができる。
N-qubit Greenberger-Horne-Zeilinger(GHZ)状態の単一コピーを用いて、セキュアなN-user会議鍵ビットを消去して、このプロトコルを効率的に実装することができる。
論文 参考訳(メタデータ) (2022-07-04T18:00:07Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
証明者と検証者の間の「相互作用」は、検証可能性と実装のギャップを埋めることができる。
イオントラップ量子コンピュータを用いた対話型量子アドバンストプロトコルの最初の実装を実演する。
論文 参考訳(メタデータ) (2021-12-09T19:00:00Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
クライアントは、古典的なチャネルを使用して量子状態をリモートで準備する。
サブモジュールとして$RSP_CC$を採用することで生じるプライバシ損失は、不明である。
特定の$RSP_CC$プロトコルは、少なくともいくつかのコンテキストにおいて量子チャネルを置き換えることができることを示す。
論文 参考訳(メタデータ) (2020-07-03T13:15:13Z) - Classical proofs of quantum knowledge [10.432041176720842]
検証者が古典的な設定で知識の証明という概念を定義する。
量子知識の非破壊的な古典的証明が何らかの状態に存在すれば、その状態は敵によってクローンできることを示す。
論文 参考訳(メタデータ) (2020-05-04T17:45:21Z) - Anti-Forging Quantum Data: Cryptographic Verification of Quantum
Computational Power [1.9737117321211988]
量子コンピューティングは、インターネットを通じて量子コンピューティングのパワーを体験するための人気のモデルとして生まれつつある。
ユーザは、サーバから送信される出力文字列が本当に量子ハードウェアからのものであることを、どうやって確認できますか?
論文 参考訳(メタデータ) (2020-05-04T14:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。