論文の概要: Likelihoods and Parameter Priors for Bayesian Networks
- arxiv url: http://arxiv.org/abs/2105.06241v1
- Date: Thu, 13 May 2021 12:45:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-14 19:45:08.462142
- Title: Likelihoods and Parameter Priors for Bayesian Networks
- Title(参考訳): ベイズネットワークの類似性とパラメータ優先
- Authors: David Heckerman and Dan Geiger
- Abstract要約: 本稿では,多数のベイズネットワーク構造に対する確率とパラメータの事前設定を許容する仮定をいくつか紹介する。
本論文では, 欠如した観察を伴わないランダムなサンプルの限界可能性を直接計算する手法を提案する。
- 参考スコア(独自算出の注目度): 7.005458308454871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop simple methods for constructing likelihoods and parameter priors
for learning about the parameters and structure of a Bayesian network. In
particular, we introduce several assumptions that permit the construction of
likelihoods and parameter priors for a large number of Bayesian-network
structures from a small set of assessments. The most notable assumption is that
of likelihood equivalence, which says that data can not help to discriminate
network structures that encode the same assertions of conditional independence.
We describe the constructions that follow from these assumptions, and also
present a method for directly computing the marginal likelihood of a random
sample with no missing observations. Also, we show how these assumptions lead
to a general framework for characterizing parameter priors of multivariate
distributions.
- Abstract(参考訳): 本研究では,ベイズネットワークのパラメータと構造を学ぶための,確率とパラメータの優先順位を設定するための簡単な手法を開発した。
特に,少数の評価から,多数のベイズネットワーク構造に対する確率とパラメータの事前設定を許容する仮定をいくつか導入する。
もっとも顕著な仮定は、データが条件付き独立性の同じ主張を符号化するネットワーク構造を識別するのに役に立たない、等値性である。
本稿では,これらの仮定から導かれる構成について述べるとともに,無観測のランダムサンプルの限界確率を直接計算する方法を提案する。
また,これらの仮定が多変量分布のパラメータ優先を特徴付ける一般的な枠組みにどのようにつながるかを示す。
関連論文リスト
- Model-free Estimation of Latent Structure via Multiscale Nonparametric Maximum Likelihood [13.175343048302697]
そこで我々は,そのような潜在構造がいつでも存在すると仮定することなく,その存在を推定するためのモデルフリーな手法を提案する。
アプリケーションとして,提案手法に基づくクラスタリングアルゴリズムを設計し,広範囲の潜伏構造を捕捉する手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-29T17:11:33Z) - A Note on Bayesian Networks with Latent Root Variables [56.86503578982023]
残りの, 証明, 変数に対する限界分布もまたベイズ的ネットワークとして分解され, 経験的と呼ぶ。
マニフェスト変数の観測のデータセットにより、経験的ベイズネットのパラメータを定量化することができる。
論文 参考訳(メタデータ) (2024-02-26T23:53:34Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
本稿では,ベイジアンネットワークの構造上の結合後部を近似する手法を提案する。
サンプリングポリシが2フェーズプロセスに従う単一のGFlowNetを使用します。
パラメータは後部分布に含まれるため、これは局所確率モデルに対してより柔軟である。
論文 参考訳(メタデータ) (2023-05-30T19:16:44Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
本稿では,多種多様なカウンターファクトの集合を推定する確率的パラダイムを提案する。
摂動を事前分布関数によるランダム変数として扱う。
収束特性の優れた勾配ベースサンプリング器は、後方サンプルを効率的に計算する。
論文 参考訳(メタデータ) (2023-01-21T00:21:11Z) - Continuous and Distribution-free Probabilistic Wind Power Forecasting: A
Conditional Normalizing Flow Approach [1.684864188596015]
条件正規化フロー(CNF)に基づく確率的風力予測のためのデータ駆動型手法を提案する。
既存の手法とは対照的に、このアプローチは(非パラメトリックおよび量子的アプローチのように)分布自由であり、連続確率密度を直接生成することができる。
論文 参考訳(メタデータ) (2022-06-06T08:48:58Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Bayesian stochastic blockmodeling [0.0]
この章では、ネットワークデータから大規模なモジュラ構造を抽出するためのベイズ推論の使用について、自己完結した紹介を行っている。
我々は、過度な適合を防止し、モデル選択を可能にする方法でそれらの推論を可能にする非パラメトリックな定式化に焦点を当てる。
本稿では,ネットワークにおけるモジュール構造の検出可能性の基本的限界に光を当て,ブロックモデルを用いてリンクの欠落やスプリアスを予測できることを示す。
論文 参考訳(メタデータ) (2017-05-29T14:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。