論文の概要: NLP is Not enough -- Contextualization of User Input in Chatbots
- arxiv url: http://arxiv.org/abs/2105.06511v1
- Date: Thu, 13 May 2021 18:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 02:26:37.848190
- Title: NLP is Not enough -- Contextualization of User Input in Chatbots
- Title(参考訳): nlpは不十分 -- チャットボットにおけるユーザ入力のコンテキスト化
- Authors: Nathan Dolbir, Triyasha Dastidar, and Kaushik Roy
- Abstract要約: ディープネットワークに基づく高度な自然言語処理技術は、ユーザの要求を効率的に処理して機能を実行する。
チャットボットが普及するにつれて、医療への適用可能性は、過剰なシステムの経済的および人的コストの削減による魅力的な提案です。
しかし、医療用ボットには、安全かつ医学的に正確な情報収集が必要です。
- 参考スコア(独自算出の注目度): 4.833037692738672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI chatbots have made vast strides in technology improvement in recent years
and are already operational in many industries. Advanced Natural Language
Processing techniques, based on deep networks, efficiently process user
requests to carry out their functions. As chatbots gain traction, their
applicability in healthcare is an attractive proposition due to the reduced
economic and people costs of an overburdened system. However, healthcare bots
require safe and medically accurate information capture, which deep networks
aren't yet capable of due to user text and speech variations. Knowledge in
symbolic structures is more suited for accurate reasoning but cannot handle
natural language processing directly. Thus, in this paper, we study the effects
of combining knowledge and neural representations on chatbot safety, accuracy,
and understanding.
- Abstract(参考訳): AIチャットボットは近年、テクノロジーの改善に大きく貢献しており、すでに多くの業界で運用されている。
ディープネットワークに基づく高度な自然言語処理技術は、ユーザの要求を効率的に処理して機能を実行する。
チャットボットが勢いを増すにつれ、医療への適用性は、オーバーバーデンドシステムの経済と人件費の削減によって、魅力的なものとなる。
しかし、医療用ボットには安全かつ医療的に正確な情報収集が必要です。
記号構造に関する知識は正確な推論に適しているが、自然言語処理を直接扱うことはできない。
そこで本研究では,知識と神経表現の組み合わせがチャットボットの安全性,精度,理解に及ぼす影響について検討する。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - A General-purpose AI Avatar in Healthcare [1.5081825869395544]
本稿では、医療におけるチャットボットの役割に焦点を当て、AIインタラクションをより患者にアピールするためのアバターの使用について検討する。
汎用AIアバターアプリケーションのフレームワークを3カテゴリのプロンプト辞書とプロンプト改善機構を用いて実証する。
2段階のアプローチでは、汎用AI言語モデルを微調整し、異なるAIアバターを作成して、ユーザと医療上の問題について議論することが提案されている。
論文 参考訳(メタデータ) (2024-01-10T03:44:15Z) - Assistive Chatbots for healthcare: a succinct review [0.0]
AI対応技術に焦点が当てられているのは、人間と機械の相互作用の質を高める可能性があるからだ。
患者の安全とデータ保護に関して、この技術に対する信頼の欠如がある。
患者は自然言語処理スキルに不満を表明している。
論文 参考訳(メタデータ) (2023-08-08T10:35:25Z) - Towards Healthy AI: Large Language Models Need Therapists Too [41.86344997530743]
私たちはHealthy AIを安全で信頼性があり倫理的であると定義しています。
本稿では,これらの有害行動の修正に心理療法を用いるセーフガードGPTフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-02T00:39:12Z) - You Don't Know My Favorite Color: Preventing Dialogue Representations
from Revealing Speakers' Private Personas [44.82330540456883]
簡単なニューラルネットワークを用いて話者のペルソナを高精度に推定可能であることを示す。
提案する防衛目標が,攻撃精度を37.6%から0.5%に大幅に低減できることを示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-26T09:36:18Z) - A Literature Survey of Recent Advances in Chatbots [0.0]
我々は、人工知能と自然言語処理を使用するチャットボットの最近の進歩についてレビューする。
我々は,現在の研究の主な課題と限界を強調し,今後の研究研究への提言を行う。
論文 参考訳(メタデータ) (2022-01-17T23:08:58Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
人間とは異なり、チャットボットは一度に複数の顧客にサービスを提供し、24/7で提供され、1秒以内で返信できる。
深層学習を用いて感情分析,感情検出,意図分類,名義認識を行い,人文的理解と知性を備えたチャットボットを開発した。
論文 参考訳(メタデータ) (2021-12-31T22:26:41Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z) - An ontology-based chatbot for crises management: use case coronavirus [0.0]
このプロジェクトでは、最大24時間利用可能となる最新情報を必要とする新型コロナウイルスアシスタントを作成する。
このマスター論文は、COVIDアシスタントについて議論し、各コンポーネントの詳細を説明するために捧げられている。
論文 参考訳(メタデータ) (2020-11-02T09:30:51Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
本稿では,分解による新しいハイレベルな抽象化を学習するニューラルセマンティック解析システムを提案する。
ユーザは、新しい振る舞いを記述する高レベルな発話を低レベルなステップに分解することで、対話的にシステムを教える。
論文 参考訳(メタデータ) (2020-10-11T08:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。