Interpretable Drug Synergy Prediction with Graph Neural Networks for
Human-AI Collaboration in Healthcare
- URL: http://arxiv.org/abs/2105.07082v1
- Date: Fri, 14 May 2021 22:20:29 GMT
- Title: Interpretable Drug Synergy Prediction with Graph Neural Networks for
Human-AI Collaboration in Healthcare
- Authors: Zehao Dong, Heming Zhang, Yixin Chen, Fuhai Li
- Abstract summary: We propose a deep graph neural network, IDSP, to incorporate the gene-gene as well as gene-drug regulatory relationships in synergic drug combination predictions.
IDSP automatically learns weights of edges based on the gene and drug node relations, by a multi-layer perceptron (MLP) and aggregates information in an inductive manner.
We test IDWSP on signaling networks formulated by genes from 46 core cancer signaling pathways and drug combinations from NCI ALMANAC drug combination screening data.
- Score: 23.151336811933938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate molecular mechanisms of resistant or sensitive response of
cancer drug combination therapies in an inductive and interpretable manner.
Though deep learning algorithms are widely used in the drug synergy prediction
problem, it is still an open problem to formulate the prediction model with
biological meaning to investigate the mysterious mechanisms of synergy (MoS)
for the human-AI collaboration in healthcare systems. To address the
challenges, we propose a deep graph neural network, IDSP (Interpretable Deep
Signaling Pathways), to incorporate the gene-gene as well as gene-drug
regulatory relationships in synergic drug combination predictions. IDSP
automatically learns weights of edges based on the gene and drug node
relations, i.e., signaling interactions, by a multi-layer perceptron (MLP) and
aggregates information in an inductive manner. The proposed architecture
generates interpretable drug synergy prediction by detecting important
signaling interactions, and can be implemented when the underlying molecular
mechanism encounters unseen genes or signaling pathways. We test IDWSP on
signaling networks formulated by genes from 46 core cancer signaling pathways
and drug combinations from NCI ALMANAC drug combination screening data. The
experimental results demonstrated that 1) IDSP can learn from the underlying
molecular mechanism to make prediction without additional drug chemical
information while achieving highly comparable performance with current
state-of-art methods; 2) IDSP show superior generality and flexibility to
implement the synergy prediction task on both transductive tasks and inductive
tasks. 3) IDSP can generate interpretable results by detecting different
salient signaling patterns (i.e. MoS) for different cell lines.
Related papers
- Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
Existing AI models face challenges due to noise in transcriptomics data and lack of biological interpretability.
We introduce VETE, a novel neural network framework that incorporates a variational component to mitigate noise effects.
VETE bridges the gap between AI-driven predictions and biologically meaningful insights in cancer research.
arXiv Detail & Related papers (2024-07-05T13:13:02Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies.
This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment.
arXiv Detail & Related papers (2023-12-03T04:01:38Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Interpreting the Mechanism of Synergism for Drug Combinations Using
Attention-Based Hierarchical Graph Pooling [10.898133007285638]
We develop an interpretable graph neural network (GNN) that reveals the underlying essential therapeutic targets and the mechanism of the synergy (MoS)
The proposed GNN model provides a systematic way to predict and interpret the drug combination synergism based on the detected crucial sub-molecular network.
arXiv Detail & Related papers (2022-09-19T11:18:45Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.