論文の概要: Correlations Between Learning Environments and Dropout Intention
- arxiv url: http://arxiv.org/abs/2105.07856v1
- Date: Fri, 7 May 2021 10:08:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-01 05:18:18.090302
- Title: Correlations Between Learning Environments and Dropout Intention
- Title(参考訳): 学習環境とドロップアウト意図の相関
- Authors: Edward Simmons
- Abstract要約: この研究は、学習環境と学生のドロップアウト意図を比較している。
統計を使って、私は2つの論文間のデータと相関を調べた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research is comparing learning environments to students dropout
intentions. While using statistics I looked at data and the correlations
between two articles to see how the two studies looked side to side. Learning
environments and dropout intentions can both have vary effects on students.
They can both determine if a student does well, or bad in school especially
math.
- Abstract(参考訳): 本研究は,学習環境と学生のドロップアウト意図を比較している。
統計を使いながら、データと2つの記事間の相関を調査して、この2つの研究がどのように並んでいるかを確認しました。
学習環境とドロップアウトの意図は、学生に異なる影響を与える可能性がある。
生徒が成績が良いか、特に数学の成績が悪いかを判断できる。
関連論文リスト
- Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments [0.37729165787434493]
本稿では,学生の難易度を予測するための自動ツールを開発する。
潜在的な応用として、このようなモデルは、苦労している生徒を検知し、目標とする支援を提供するインストラクターを助けることができる。
論文 参考訳(メタデータ) (2024-08-16T04:57:54Z) - A Comparative Analysis of Student Performance Predictions in Online Courses using Heterogeneous Knowledge Graphs [0.0]
学生,コースビデオ,フォーマティブアセスメント,および学生のパフォーマンス予測のためのインタラクションからなる異種知識グラフを分析した。
次に、同一コースの5つのオンラインMOOCスタイルインスタンスと2つの完全オンラインMOOCスタイルインスタンスを比較した。
このモデルは、生徒が消費したコンテンツ、コース、モダリティに基づいて、特定の問題に合格するかどうかを予測する精度を70~90%向上した。
論文 参考訳(メタデータ) (2024-05-19T03:33:59Z) - Student Teacher Interaction While Learning Computer Science: Early
Results from an Experiment on Undergraduates [0.0]
本研究の目的は,コンピュータサイエンスの学生が学習スタイルをどう知覚するかを明らかにすることである。
学生はよりインタラクティブなコースを好み、リラックスした雰囲気を持つ。
論文 参考訳(メタデータ) (2023-07-07T19:08:59Z) - Protected Attributes Tell Us Who, Behavior Tells Us How: A Comparison of
Demographic and Behavioral Oversampling for Fair Student Success Modeling [6.58879009604603]
リスクのある学生を識別するために行動データを利用するモデルの公正性を解析し、バイアス軽減のための2つの新しい前処理アプローチを提案する。
交差性の概念に基づいて、第一のアプローチは、人口統計特性の組み合わせによるインテリジェントなオーバーサンプリングである。
第二のアプローチは、人口統計学的属性の知識を一切必要とせず、そのような属性が学生の行動の(騒々しい)プロキシであるという仮定に基づいている。
論文 参考訳(メタデータ) (2022-12-20T11:09:11Z) - Student-centric Model of Learning Management System Activity and
Academic Performance: from Correlation to Causation [2.169383034643496]
近年,学生の学習行動パターンを理解するために,学習管理システム(LMS)における学習者のデジタルトレースのモデル化に多くの関心が寄せられている。
本稿では,LMS活動データに対する学生中心の分析フレームワークについて検討し,観察データから抽出した相関性だけでなく因果的洞察も提供する。
これらの知見は、大学生支援団体が学生中心で標的とする介入を開始するための証拠となると期待している。
論文 参考訳(メタデータ) (2022-10-27T14:08:25Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
本研究では,新しいグラフコントラスト学習手法,すなわち textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learningを提案する。
両空間にはグラフデータを埋め込み空間に表現する独自の利点があるので、グラフコントラスト学習を用いて空間をブリッジし、双方の利点を活用することを期待する。
論文 参考訳(メタデータ) (2022-01-19T04:10:29Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
自己教師付き視覚表現学習は効率的な映像分析の鍵である。
最近の画像表現の学習の成功は、コントラスト学習がこの課題に取り組むための有望なフレームワークであることを示唆している。
コントラスト学習の協調的バリエーションを導入し、ビュー間の相補的な情報を活用する。
論文 参考訳(メタデータ) (2021-04-30T05:46:02Z) - Robust Audio-Visual Instance Discrimination [79.74625434659443]
音声・映像表現を学習するための自己指導型学習法を提案する。
視聴覚インスタンスの識別の問題に対処し、転送学習パフォーマンスを向上させます。
論文 参考訳(メタデータ) (2021-03-29T19:52:29Z) - Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students [61.58283466715385]
MOOC(Massive Open Online Courses)は、学生の異質性を示す。
MOOCプラットフォームからの複雑な“ビッグデータ”の出現は、学生がMOOCにどのように従事しているかを深く理解する上で、難しいが報われる機会である。
本報告では,MOOCにおける学生活動のクラスタリング分析と,学生集団間の行動パターンと人口動態の比較分析について述べる。
論文 参考訳(メタデータ) (2020-08-12T10:38:50Z) - Few-shot Visual Reasoning with Meta-analogical Contrastive Learning [141.2562447971]
本稿では,類似推論に頼って,数ショット(または低ショット)の視覚推論問題を解くことを提案する。
両領域の要素間の構造的関係を抽出し、類似学習と可能な限り類似するように強制する。
RAVENデータセット上での本手法の有効性を検証し, トレーニングデータが少ない場合, 最先端の手法より優れることを示す。
論文 参考訳(メタデータ) (2020-07-23T14:00:34Z) - Learning to Compare Relation: Semantic Alignment for Few-Shot Learning [48.463122399494175]
本稿では,コンテンツアライメントに頑健な関係を比較するための新しいセマンティックアライメントモデルを提案する。
数ショットの学習データセットについて広範な実験を行う。
論文 参考訳(メタデータ) (2020-02-29T08:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。