論文の概要: Livewired Neural Networks: Making Neurons That Fire Together Wire
Together
- arxiv url: http://arxiv.org/abs/2105.08111v1
- Date: Mon, 17 May 2021 18:45:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-20 03:40:10.922006
- Title: Livewired Neural Networks: Making Neurons That Fire Together Wire
Together
- Title(参考訳): livewiredニューラルネットワーク: 一緒に光るニューロンを作る
- Authors: Thomas Schumacher
- Abstract要約: ネットワーク構造は機能と非常に関連があるので、ニューラルネットワークはライブワイヤ化されるべきです。
このようなネットワークが、どのようにしてシンボルを操作する構成的世界モデルを構築することができるかについて論じる。
私は、livewiredネットワークを使って人間のような推論を理解し作成するための将来の研究の道筋を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Until recently, artificial neural networks were typically designed with a
fixed network structure. Here, I argue that network structure is highly
relevant to function, and therefore neural networks should be livewired
(Eagleman 2020): dynamically rewired to reflect relationships between higher
order representations of the external environment identified by coincident
activations in individual neurons. I discuss how this approach may enable such
networks to build compositional world models that operate on symbols and that
achieve few-shot learning, capabilities thought by many to be critical to
human-level cognition. Here, I also 1) discuss how such livewired neural
networks maximize the information the environment provides to a model, 2)
explore evidence indicating that livewiring is implemented in the brain, guided
by glial cells, 3) discuss how livewiring may give rise to the associative
emergent behaviors of brains, and 4) suggest paths for future research using
livewired networks to understand and create human-like reasoning.
- Abstract(参考訳): 最近まで、ニューラルネットワークは通常、固定されたネットワーク構造で設計されていた。
ここで、ネットワーク構造は機能に非常に関連しており、それゆえニューラルネットワークはlivewired(eagleman 2020): 個々のニューロンにおける偶然の活性化によって識別される外部環境の高次表現間の関係を反映して動的に再配線されるべきである。
このアプローチによって、このようなネットワークが、シンボル上で動作し、少数ショットの学習を実現する構成的世界モデルを構築することができるかについて議論します。
ここでは, 環境がモデルに与える情報をいかに最大化するか, 2) グリア細胞によって誘導される生体配線が脳に実装されていることを示す証拠を探索し, 3) 生体配線が脳の連想行動を引き起こす可能性について考察し, 4) 生体配線ネットワークを用いた将来の研究の道筋について提案する。
関連論文リスト
- Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
本稿では、障害特異的な関心領域(ROI)と顕著なつながりを分析するための解釈可能なフレームワークを提案する。
提案するフレームワークは,脳ネットワーク指向の疾患予測のためのバックボーンモデルと,グローバルに共有された説明生成装置の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2022-06-30T08:02:05Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
本稿では,ニューラルネットワークの誤予測の原因となる,人間の認識可能な情報を含む対人摂動について述べる。
この人間の認識可能な情報の概念は、敵の摂動に関連する重要な特徴を説明できる。
論文 参考訳(メタデータ) (2022-05-30T18:04:57Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neural Rule Ensembles: Encoding Sparse Feature Interactions into Neural
Networks [3.7277730514654555]
決定木を用いて、関連する特徴とその相互作用をキャプチャし、抽出した関係をニューラルネットワークにエンコードするマッピングを定義する。
同時に、機能選択により、アートツリーベースのアプローチの状況と比較して、コンパクトな表現の学習が可能になる。
論文 参考訳(メタデータ) (2020-02-11T11:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。