論文の概要: Expressivity of Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2308.08218v2
- Date: Fri, 15 Mar 2024 13:50:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 07:32:15.629284
- Title: Expressivity of Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークの表現性
- Authors: Manjot Singh, Adalbert Fono, Gitta Kutyniok,
- Abstract要約: 本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
- 参考スコア(独自算出の注目度): 15.181458163440634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The synergy between spiking neural networks and neuromorphic hardware holds promise for the development of energy-efficient AI applications. Inspired by this potential, we revisit the foundational aspects to study the capabilities of spiking neural networks where information is encoded in the firing time of neurons. Under the Spike Response Model as a mathematical model of a spiking neuron with a linear response function, we compare the expressive power of artificial and spiking neural networks, where we initially show that they realize piecewise linear mappings. In contrast to ReLU networks, we prove that spiking neural networks can realize both continuous and discontinuous functions. Moreover, we provide complexity bounds on the size of spiking neural networks to emulate multi-layer (ReLU) neural networks. Restricting to the continuous setting, we also establish complexity bounds in the reverse direction for one-layer spiking neural networks.
- Abstract(参考訳): スパイクニューラルネットワークとニューロモルフィックハードウェアの相乗効果は、エネルギー効率の良いAIアプリケーションの開発を約束する。
この可能性に触発されて、我々は基礎的な側面を再考し、ニューロンの発射時間に情報を符号化する神経回路をスパイクする能力について研究する。
スパイク応答モデルでは、スパイク応答関数を持つスパイクニューロンの数学的モデルとして、人工ニューラルネットワークとスパイクニューラルネットワークの表現力を比較する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
さらに,多層ニューラルネットワーク(ReLU)をエミュレートするために,スパイクニューラルネットワークのサイズによる複雑性境界を提供する。
連続的な設定を制限することにより、一層スパイクニューラルネットワークの逆方向の複雑性境界も確立する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Connected Hidden Neurons (CHNNet): An Artificial Neural Network for
Rapid Convergence [0.6218519716921521]
我々は,同じ隠蔽層に隠されたニューロンが相互に相互に結合し,急速に収束する,より堅牢な人工知能ニューラルネットワークモデルを提案する。
深層ネットワークにおける提案モデルの実験研究により,従来のフィードフォワードニューラルネットワークと比較して,モデルが顕著に収束率を上昇させることを示した。
論文 参考訳(メタデータ) (2023-05-17T14:00:38Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Functional Connectome: Approximating Brain Networks with Artificial
Neural Networks [1.952097552284465]
訓練されたディープニューラルネットワークは、合成生物学的ネットワークによって実行される計算を高精度に捉えることができることを示す。
訓練されたディープニューラルネットワークは、新しい環境でゼロショットの一般化を実行可能であることを示す。
本研究は, システム神経科学における新規かつ有望な方向性を明らかにする。
論文 参考訳(メタデータ) (2022-11-23T13:12:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Deep Spiking Convolutional Neural Network for Single Object Localization
Based On Deep Continuous Local Learning [0.0]
グレースケール画像における単一物体の局所化のための深部畳み込みスパイクニューラルネットワークを提案する。
Oxford-IIIT-Petで報告された結果は、教師付き学習アプローチによるスパイクニューラルネットワークの活用を検証する。
論文 参考訳(メタデータ) (2021-05-12T12:02:05Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。