論文の概要: NeurFlow: Interpreting Neural Networks through Neuron Groups and Functional Interactions
- arxiv url: http://arxiv.org/abs/2502.16105v1
- Date: Sat, 22 Feb 2025 06:01:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:57:46.214122
- Title: NeurFlow: Interpreting Neural Networks through Neuron Groups and Functional Interactions
- Title(参考訳): NeurFlow: ニューロン群と機能的相互作用によるニューラルネットワークの解釈
- Authors: Tue M. Cao, Nhat X. Hoang, Hieu H. Pham, Phi Le Nguyen, My T. Thai,
- Abstract要約: 本稿では、個々のニューロンの分析からニューロン群の調査へと焦点を移す新しい枠組みを提案する。
自動フレームワークNeurFlowは、まずコアニューロンを特定し、共有機能関係に基づいてグループにクラスタ化する。
- 参考スコア(独自算出の注目度): 16.00223741620103
- License:
- Abstract: Understanding the inner workings of neural networks is essential for enhancing model performance and interpretability. Current research predominantly focuses on examining the connection between individual neurons and the model's final predictions. Which suffers from challenges in interpreting the internal workings of the model, particularly when neurons encode multiple unrelated features. In this paper, we propose a novel framework that transitions the focus from analyzing individual neurons to investigating groups of neurons, shifting the emphasis from neuron-output relationships to functional interaction between neurons. Our automated framework, NeurFlow, first identifies core neurons and clusters them into groups based on shared functional relationships, enabling a more coherent and interpretable view of the network's internal processes. This approach facilitates the construction of a hierarchical circuit representing neuron interactions across layers, thus improving interpretability while reducing computational costs. Our extensive empirical studies validate the fidelity of our proposed NeurFlow. Additionally, we showcase its utility in practical applications such as image debugging and automatic concept labeling, thereby highlighting its potential to advance the field of neural network explainability.
- Abstract(参考訳): ニューラルネットワークの内部動作を理解することは、モデル性能と解釈可能性を高めるために不可欠である。
現在の研究は主に、個々のニューロンとモデルの最終的な予測との関係を調べることに焦点を当てている。
これは、特にニューロンが複数の無関係な特徴をコードする場合、モデルの内部動作を解釈する際の課題に悩まされる。
本稿では,個々のニューロンの分析からニューロン群の調査へと焦点を移し,ニューロン間の機能的相互作用に焦点を移す新しい枠組みを提案する。
私たちの自動フレームワークであるNeurFlowは、まずコアニューロンを識別し、共有機能関係に基づいてグループにクラスタし、ネットワークの内部プロセスのより一貫性と解釈可能なビューを可能にします。
このアプローチは、層間のニューロン相互作用を表す階層回路の構築を容易にし、計算コストを削減しながら解釈性を向上させる。
提案したNeurFlowの忠実性を検証するための実験的検討を行った。
さらに、画像デバッギングや自動概念ラベリングといった実用的応用において、その実用性を実証し、ニューラルネットワークの説明可能性の分野を前進させる可能性を強調した。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Adapting the Biological SSVEP Response to Artificial Neural Networks [5.4712259563296755]
本稿では,神経科学の手法である周波数タギングに触発されたニューロン重要度評価に対する新しいアプローチを提案する。
画像分類のための畳み込みニューラルネットワークを用いて行った実験では、パートベースの周波数タギングの下でのニューロン特異的応答における顕著な調和と相互変調が明らかにされた。
提案手法は,ネットワークプルーニングやモデル解釈可能性などの応用を約束し,説明可能な人工知能の進歩に寄与する。
論文 参考訳(メタデータ) (2024-11-15T10:02:48Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
神経科学とAIの両方において、ニューロン間の'結合'が競合学習の形式につながることは長年知られている。
完全に接続された畳み込みや注意機構などの任意の接続設計とともに人工的再考を導入する。
このアイデアは、教師なしオブジェクト発見、敵対的ロバスト性、不確実性、推論など、幅広いタスクに性能改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Statistical tuning of artificial neural network [0.0]
本研究では、ニューラルネットワークの理解を強化する方法を紹介し、特に1つの隠蔽層を持つモデルに焦点を当てる。
本稿では,入力ニューロンの意義を統計的に評価し,次元減少のためのアルゴリズムを提案する。
この研究は、ニューラルネットワークを解釈するための堅牢な統計フレームワークを提示することにより、説明可能な人工知能の分野を前進させる。
論文 参考訳(メタデータ) (2024-09-24T19:47:03Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
本稿では,大きな基礎モデルを持つニューロンの意味的説明を生成するための,新しいポストホックフレームワークを提案する。
我々のフレームワークは、様々なモデルアーキテクチャやデータセット、自動化されたスケーラブルなニューロン解釈と互換性があるように設計されています。
論文 参考訳(メタデータ) (2023-10-16T17:04:51Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z) - Neuronal Correlation: a Central Concept in Neural Network [22.764342635264452]
神経相関は, 重み行列を用いて効率的に推定できることが示唆された。
神経相関は高次元隠れ空間におけるエントロピー推定の精度に大きく影響している。
論文 参考訳(メタデータ) (2022-01-22T15:01:50Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。