Deep Multistage Multi-Task Learning for Quality Prediction of Multistage
Manufacturing Systems
- URL: http://arxiv.org/abs/2105.08180v1
- Date: Mon, 17 May 2021 22:09:36 GMT
- Title: Deep Multistage Multi-Task Learning for Quality Prediction of Multistage
Manufacturing Systems
- Authors: Hao Yan, Nurretin Dorukhan Sergin, William A. Brenneman, Stephen
Joseph Lange, Shan Ba
- Abstract summary: We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework.
Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods.
- Score: 7.619217846525994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In multistage manufacturing systems, modeling multiple quality indices based
on the process sensing variables is important. However, the classic modeling
technique predicts each quality variable one at a time, which fails to consider
the correlation within or between stages. We propose a deep multistage
multi-task learning framework to jointly predict all output sensing variables
in a unified end-to-end learning framework according to the sequential system
architecture in the MMS. Our numerical studies and real case study have shown
that the new model has a superior performance compared to many benchmark
methods as well as great interpretability through developed variable selection
techniques.
Related papers
- MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.
MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.
Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - Few-shot Multi-Task Learning of Linear Invariant Features with Meta Subspace Pursuit [9.421309916099428]
We propose a new algorithm called Meta Subspace Pursuit (abbreviated as Meta-SP)
Under this assumption, we propose a new algorithm, called Meta Subspace Pursuit (abbreviated as Meta-SP)
arXiv Detail & Related papers (2024-09-04T13:44:22Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers.
This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of large language models.
Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization.
arXiv Detail & Related papers (2024-02-10T11:14:53Z) - An Empirical Investigation into Benchmarking Model Multiplicity for
Trustworthy Machine Learning: A Case Study on Image Classification [0.8702432681310401]
This paper offers a one-stop empirical benchmark of multiplicity across various dimensions of model design.
We also develop a framework, which we call multiplicity sheets, to benchmark multiplicity in various scenarios.
We show that multiplicity persists in deep learning models even after enforcing additional specifications during model selection.
arXiv Detail & Related papers (2023-11-24T22:30:38Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
We propose a flexible multi-task learning framework utilizing summary statistics from various sources.
We also present an adaptive parameter selection approach based on a variant of Lepski's method.
This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction.
arXiv Detail & Related papers (2023-07-05T15:55:23Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z) - Scalable Multi-Task Gaussian Processes with Neural Embedding of
Coregionalization [9.873139480223367]
Multi-task regression attempts to exploit the task similarity in order to achieve knowledge transfer across related tasks for performance improvement.
The linear model of coregionalization (LMC) is a well-known MTGP paradigm which exploits the dependency of tasks through linear combination of several independent and diverse GPs.
We develop the neural embedding of coregionalization that transforms the latent GPs into a high-dimensional latent space to induce rich yet diverse behaviors.
arXiv Detail & Related papers (2021-09-20T01:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.