Adaptive Multi-task Learning for Multi-sector Portfolio Optimization
- URL: http://arxiv.org/abs/2507.16433v1
- Date: Tue, 22 Jul 2025 10:24:24 GMT
- Title: Adaptive Multi-task Learning for Multi-sector Portfolio Optimization
- Authors: Qingliang Fan, Ruike Wu, Yanrong Yang,
- Abstract summary: We propose a novel data-adaptive multi-task learning methodology that quantifies and learns the relatedness among the principal temporal subspaces (spanned by factors) across multiple sectors under study.<n>This approach not only improves the simultaneous estimation of multiple factor models but also enhances multi-sector portfolio optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate transfer of information across multiple sectors to enhance model estimation is both significant and challenging in multi-sector portfolio optimization involving a large number of assets in different classes. Within the framework of factor modeling, we propose a novel data-adaptive multi-task learning methodology that quantifies and learns the relatedness among the principal temporal subspaces (spanned by factors) across multiple sectors under study. This approach not only improves the simultaneous estimation of multiple factor models but also enhances multi-sector portfolio optimization, which heavily depends on the accurate recovery of these factor models. Additionally, a novel and easy-to-implement algorithm, termed projection-penalized principal component analysis, is developed to accomplish the multi-task learning procedure. Diverse simulation designs and practical application on daily return data from Russell 3000 index demonstrate the advantages of multi-task learning methodology.
Related papers
- Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging [103.98582374569789]
Model merging aims to combine multiple expert models into a single model, thereby reducing storage and serving costs.<n>Previous studies have primarily focused on merging visual classification models or Large Language Models (LLMs) for code and math tasks.<n>We introduce the model merging benchmark for MLLMs, which includes multiple tasks such as VQA, Geometry, Chart, OCR, and Grounding, providing both LoRA and full fine-tuning models.
arXiv Detail & Related papers (2025-05-26T12:23:14Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting [16.640336442849282]
We formulate a multi-task optimization problem as a regularization technique to enable single-task models to leverage multi-task learning information.
We derive a closed-form solution for multi-task optimization in the context of linear models.
arXiv Detail & Related papers (2024-06-14T17:59:25Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers.
This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of large language models.
Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization.
arXiv Detail & Related papers (2024-02-10T11:14:53Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
We propose a flexible multi-task learning framework utilizing summary statistics from various sources.
We also present an adaptive parameter selection approach based on a variant of Lepski's method.
This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction.
arXiv Detail & Related papers (2023-07-05T15:55:23Z) - Body Segmentation Using Multi-task Learning [1.0832844764942349]
We present a novel multi-task model for human segmentation/parsing that involves three tasks.
The main idea behind the proposed--Pose--DensePose model (or SPD for short) is to learn a better segmentation model by sharing knowledge across different, yet related tasks.
The performance of the model is analysed through rigorous experiments on the LIP and ATR datasets and in comparison to a recent (state-of-the-art) multi-task body-segmentation model.
arXiv Detail & Related papers (2022-12-13T13:06:21Z) - High-Modality Multimodal Transformer: Quantifying Modality & Interaction
Heterogeneity for High-Modality Representation Learning [112.51498431119616]
This paper studies efficient representation learning for high-modality scenarios involving a large set of diverse modalities.
A single model, HighMMT, scales up to 10 modalities (text, image, audio, video, sensors, proprioception, speech, time-series, sets, and tables) and 15 tasks from 5 research areas.
arXiv Detail & Related papers (2022-03-02T18:56:20Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Deep Multistage Multi-Task Learning for Quality Prediction of Multistage
Manufacturing Systems [7.619217846525994]
We propose a deep multistage multi-task learning framework to jointly predict all output sensing variables in a unified end-to-end learning framework.
Our numerical studies and real case study have shown that the new model has a superior performance compared to many benchmark methods.
arXiv Detail & Related papers (2021-05-17T22:09:36Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.