DRIVE: One-bit Distributed Mean Estimation
- URL: http://arxiv.org/abs/2105.08339v1
- Date: Tue, 18 May 2021 08:03:39 GMT
- Title: DRIVE: One-bit Distributed Mean Estimation
- Authors: Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson, Yaniv
Ben-Itzhak, Michael Mitzenmacher
- Abstract summary: We consider the problem where $n$ clients transmit $d$-dimensional real-valued vectors using only $d(1+o(1))$ bits each.
We derive corresponding new algorithms that outperform previous compression algorithms in accuracy and computational efficiency.
- Score: 16.41391088542669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem where $n$ clients transmit $d$-dimensional
real-valued vectors using only $d(1+o(1))$ bits each, in a manner that allows a
receiver to approximately reconstruct their mean. Such compression problems
arise in federated and distributed learning, as well as in other domains. We
provide novel mathematical results and derive corresponding new algorithms that
outperform previous compression algorithms in accuracy and computational
efficiency. We evaluate our methods on a collection of distributed and
federated learning tasks, using a variety of datasets, and show a consistent
improvement over the state of the art.
Related papers
- Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training [53.07879717463279]
textscDomain2Vec decomposes any dataset into a linear combination of several emphmeta-domains<n>textscDomain2Vec helps find the data mixture that enhances downstream task performance with minimal computational overhead.
arXiv Detail & Related papers (2025-06-12T17:53:51Z) - Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Learning general Gaussian mixtures with efficient score matching [16.06356123715737]
We study the problem of learning mixtures of $k$ Gaussians in $d$ dimensions.
We make no separation assumptions on the underlying mixture components.
We give an algorithm that draws $dmathrmpoly(k/varepsilon)$ samples from the target mixture, runs in sample-polynomial time, and constructs a sampler.
arXiv Detail & Related papers (2024-04-29T17:30:36Z) - CORE: Common Random Reconstruction for Distributed Optimization with
Provable Low Communication Complexity [110.50364486645852]
Communication complexity has become a major bottleneck for speeding up training and scaling up machine numbers.
We propose Common Om REOm, which can be used to compress information transmitted between machines.
arXiv Detail & Related papers (2023-09-23T08:45:27Z) - Replicable Clustering [57.19013971737493]
We propose algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their counterparts in a black-box manner.
We also provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
arXiv Detail & Related papers (2023-02-20T23:29:43Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Differentially Private Federated Learning via Inexact ADMM with Multiple
Local Updates [0.0]
We develop a DP inexact alternating direction method of multipliers algorithm with multiple local updates for federated learning.
We show that our algorithm provides $barepsilon$-DP for every iteration, where $barepsilon$ is a privacy budget controlled by the user.
We demonstrate that our algorithm reduces the testing error by at most $31%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2022-02-18T19:58:47Z) - Differentially Private Federated Learning via Inexact ADMM [0.0]
Differential privacy (DP) techniques can be applied to the federated learning model to protect data privacy against inference attacks.
We develop a DP inexact alternating direction method of multipliers algorithm that solves a sequence of trust-region subproblems.
Our algorithm reduces the testing error by at most $22%$ compared with the existing DP algorithm, while achieving the same level of data privacy.
arXiv Detail & Related papers (2021-06-11T02:28:07Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
We study the fundamental problem of fixed design em multidimensional regression.
We provide the first sample and computationally efficient algorithm for this problem in any fixed dimension.
Our algorithm relies on a simple merging iterative approach, which is novel in the multidimensional setting.
arXiv Detail & Related papers (2020-03-24T19:39:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.