Phenomenology of spectral functions in disordered spin chains at
infinite temperature
- URL: http://arxiv.org/abs/2105.09336v2
- Date: Wed, 29 Dec 2021 10:19:59 GMT
- Title: Phenomenology of spectral functions in disordered spin chains at
infinite temperature
- Authors: Lev Vidmar, Bartosz Krajewski, Janez Bonca, Marcin Mierzejewski
- Abstract summary: We introduce a theory that may explain some of the features of disordered spin chains.
Taking the spin imbalance as an observable, we demonstrate that the proximity to the local integrals of motion of the Anderson insulator determines the dynamics of the observable at infinite temperature.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Studies of disordered spin chains have recently experienced a renewed
interest, inspired by the question to which extent the exact numerical
calculations comply with the existence of a many-body localization phase
transition. For the paradigmatic random field Heisenberg spin chains, many
intriguing features were observed when the disorder is considerable compared to
the spin interaction strength. Here, we introduce a phenomenological theory
that may explain some of those features. The theory is based on the proximity
to the noninteracting limit, in which the system is an Anderson insulator.
Taking the spin imbalance as an exemplary observable, we demonstrate that the
proximity to the local integrals of motion of the Anderson insulator determines
the dynamics of the observable at infinite temperature. In finite interacting
systems our theory quantitatively describes its integrated spectral function
for a wide range of disorders.
Related papers
- Spread and Spectral Complexity in Quantum Spin Chains: from Integrability to Chaos [0.0]
We explore spread and spectral complexity in quantum systems that exhibit a transition from integrability to chaos.
We find that the saturation value of spread complexity post-peak depends not only on the spectral statistics of the Hamiltonian, but also on the specific state.
We conjecture that the thermofield double state (TFD) is suitable for probing signatures of chaos in quantum many-body systems.
arXiv Detail & Related papers (2024-05-18T10:54:50Z) - Chiral and flavor oscillations in a hyperentangled neutrino state [0.0]
We show that the state of a neutrino produced by a weak interaction process is an hyperentangled state of flavor, chirality, and spin.
Since chirality is not a conserved quantity, chiral oscillations take place and affects the flavor transition probability.
Our analysis provides a complete characterization of the quantum correlations involved in lepton-antineutrino pairs and in single particle neutrino evolution.
arXiv Detail & Related papers (2023-08-28T13:38:49Z) - Multifractality in the interacting disordered Tavis-Cummings model [0.0]
We analyze the spectral and transport properties of the interacting disordered Tavis-Cummings model at half excitation filling.
We find that the bipartite entanglement entropy grows logarithmically with time.
We show that these effects are due to the combination of finite interactions and integrability of the model.
arXiv Detail & Related papers (2023-02-28T16:31:12Z) - Observation of anisotropy-independent magnetization dynamics in spatially disordered Heisenberg spin systems [0.0]
We experimentally observe robust features in the magnetization relaxation dynamics of disordered Heisenberg XX-, XXZ- and Ising Hamiltonians.
In numerical simulations of small systems, we show that these pairs of spins constitute approximate local integrals of motion.
arXiv Detail & Related papers (2022-09-16T17:44:49Z) - Pair localization in dipolar systems with tunable positional disorder [0.0]
We study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings.
We show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities.
arXiv Detail & Related papers (2022-07-29T04:31:47Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.