論文の概要: Quantum imprints of gravitational shockwaves
- arxiv url: http://arxiv.org/abs/2105.09337v2
- Date: Thu, 3 Jun 2021 14:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 11:31:03.796286
- Title: Quantum imprints of gravitational shockwaves
- Title(参考訳): 重力衝撃波の量子インプリント
- Authors: Finnian Gray, David Kubiznak, Taillte May, Sydney Timmerman, Erickson
Tjoa
- Abstract要約: 重力衝撃波が試験量子場の真空状態に量子インプリントを残すことを示す。
このインプリントは、この時空でウンルー-デウィット検出器を運んでいる地元の観測者にもアクセス可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gravitational shockwaves are simple exact solutions of Einstein equations
representing the fields of ultrarelativistic sources and idealized
gravitational waves (shocks). Historically, much work has focused on shockwaves
in the context of possible black hole formation in high energy particle
collisions, yet they remain at the forefront of research even today.
Representing hard modes in the bulk, shocks give rise to the gravitational
memory effect at the classical level and implant supertranslation (BMS) hair
onto a classical spacetime at the quantum level. The aim of this paper is to
further our understanding of the `information content' of such
supertranslations. Namely, we show that, contrary to the several claims in the
literature, a gravitational shockwave does leave a quantum imprint on the
vacuum state of a test quantum field and that this imprint is accessible to
local observers carrying Unruh--DeWitt (UDW) detectors in this spacetime.
- Abstract(参考訳): 重力衝撃波は、超相対論的源と理想的な重力波(衝撃)の場を表すアインシュタイン方程式の単純な正確な解である。
歴史的に、多くの研究は高エネルギー粒子衝突におけるブラックホール形成の文脈で衝撃波に焦点を当ててきたが、現在でも研究の最前線に残っている。
バルク内のハードモードを表す衝撃は、古典的なレベルでの重力記憶効果と、量子レベルでの古典的な時空に埋め込んだスーパートランスレーション(BMS)ヘアを生じさせる。
本研究の目的は,このような超翻訳の「情報内容」の理解を深めることである。
すなわち、この文献におけるいくつかの主張とは対照的に、重力衝撃波は、試験量子場の真空状態に量子インプリントを残し、このインプリントは、この時空にウンルー・デウィット検出器(UDW)を持つ局所観測者にアクセス可能であることを示す。
関連論文リスト
- Gravitational Wave and Quantum Graviton Interferometer Arm Detection of Gravitons [0.0]
本稿ではLIGOのような干渉計における重力波検出の量子的および古典的記述について考察する。
単純な重力散乱モデルでは観測された腕の変位を説明できないが、古典的な重力波法と量子重力エネルギー法の両方が正しい結果を予測することに成功した。
論文 参考訳(メタデータ) (2024-11-09T19:33:34Z) - Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
最下層のランダウでは、系は半拡散的に緩和することを示した。
緩やかな緩和は、全電荷の創発的保存法則から理解される。
我々は、この非伝統的な緩和ダイナミクスを観察するために、光学格子における回転量子ガスと超低温原子の展望について論じる。
論文 参考訳(メタデータ) (2024-10-09T18:00:02Z) - Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
重力赤方偏移とアハロノフ・ボーム相の一般的な現象を明らかにする。
絡み合った量子状態は普遍的な速度で脱相することを示す。
精密重力計と機械ひずみ計のための量子センサとして,量子ビットプラットフォームを提案する。
論文 参考訳(メタデータ) (2024-06-05T13:36:06Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
我々は、高感度重力による量子位相シフトを用いて、そのような粒子を直接検出する理論的な可能性を示す。
特に、ジョセフソン接合を利用したプロトコルを考える。
論文 参考訳(メタデータ) (2023-09-15T08:22:46Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Bound on Quantum Fluctuations in Gravitational Waves from LIGO [0.0]
重力波の量子ゆらぎを管理する中心方程式のいくつかを導出する。
我々は、一般相対性理論を広い距離における有意義な有効量子理論として利用している。
論文 参考訳(メタデータ) (2021-12-22T19:00:03Z) - Quantum signatures of black hole mass superpositions [0.0]
我々は,BTZブラックホールの質量重畳による時空における検出器の力学解析に本手法を適用した。
この検出器は、量子重力におけるブラックホールの量子化質量スペクトルに関するベッケンシュタインの予想を裏付ける量子重力効果の符号を示す。
論文 参考訳(メタデータ) (2021-11-26T05:20:25Z) - Quantum signatures in nonlinear gravitational waves [0.0]
重力波の量子シグネチャについて、量子光学のツールを用いて検討する。
我々は,Squeezed-coherentな重力波が干渉計によって測定された信号を強化または抑制できることを示す。
また、ガウス重力波量子状態は、重力波の1つのコピーと相互作用する光学場のアンサンブル上での測定から再構成可能であることを示す。
論文 参考訳(メタデータ) (2021-11-02T17:55:53Z) - Position-dependent mass in strong quantum gravitational background
fields [0.0]
無限の正方形井戸に閉じ込められた位置依存質量を持つ粒子の力学について検討する。
量子重力効果を増大させることにより、粒子のPDMは増加し、量子エネルギーレベルの変形を誘導することを示す。
論文 参考訳(メタデータ) (2020-12-18T23:18:32Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
エンタングルメント収穫プロトコルは真空エンタングルメントを探索する方法である。
このプロトコルを用いて、個々の原子の遷移確率は重力波の存在によって影響されないが、2つの原子によって得られる絡み合いは重力波の周波数に敏感に依存することを示した。
このことは、重力波が残した絡み合い符号がその特性を特徴づけるのに有用であり、重力波メモリ効果と重力波誘起デコヒーレンスを探索するのに有用である可能性を示唆している。
論文 参考訳(メタデータ) (2020-06-19T18:01:04Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
位相量子相は現代物理学の多くの概念の根底にある。
ここでは、トポロジカルエッジ状態、スペクトルランダウレベル、ホフスタッターバタフライを持つ量子ホール相が、単純な量子系に出現することを明らかにする。
このようなシステムでは、古典的なディックモデルによって記述されている光に結合した2レベル原子(量子ビット)の配列が、最近、低温原子と超伝導量子ビットによる実験で実現されている。
論文 参考訳(メタデータ) (2020-03-18T14:56:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。