論文の概要: Improved Neuronal Ensemble Inference with Generative Model and MCMC
- arxiv url: http://arxiv.org/abs/2105.09679v1
- Date: Thu, 20 May 2021 11:37:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-21 13:40:11.482794
- Title: Improved Neuronal Ensemble Inference with Generative Model and MCMC
- Title(参考訳): 生成モデルとMCMCによるニューロンのアンサンブル推論の改善
- Authors: Shun Kimura, Keisuke Ota, Koujin Takeda
- Abstract要約: マルコフ連鎖モンテカルロ法における更新規則を変更し,改良されたベイズ推定アルゴリズムを提案する。
我々は,本アルゴリズムと原文のアンサンブル推論の性能を比較し,本手法の利点について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuronal ensemble inference is a significant problem in the study of
biological neural networks. Various methods have been proposed for ensemble
inference from experimental data of neuronal activity. Among them, Bayesian
inference approach with generative model was proposed recently. However, this
method requires large computational cost for appropriate inference. In this
work, we give an improved Bayesian inference algorithm by modifying update rule
in Markov chain Monte Carlo method and introducing the idea of simulated
annealing for hyperparameter control. We compare the performance of ensemble
inference between our algorithm and the original one, and discuss the advantage
of our method.
- Abstract(参考訳): 神経アンサンブル推論は生物学的ニューラルネットワークの研究において重要な問題である。
ニューロン活動の実験データからアンサンブル推論のための様々な方法が提案されている。
このうち, 生成モデルを用いたベイズ推定手法が最近提案されている。
しかし、適切な推論を行うには計算コストが大きい。
本研究では,マルコフ連鎖モンテカルロ法における更新規則を変更し,過度パラメータ制御のシミュレーションアニーリングの概念を導入することにより,ベイズ推定アルゴリズムの改良を行った。
我々は,本アルゴリズムと原文のアンサンブル推論の性能を比較し,本手法の利点について考察する。
関連論文リスト
- Proximal Interacting Particle Langevin Algorithms [0.0]
本稿では,潜時変動モデルにおける推論と学習のためのPIPLAアルゴリズムを提案する。
非微分不可能な統計モデルにおけるパラメータ推定の問題に合わせた、新しい近位IPLAファミリー内のいくつかの変種を提案する。
我々の理論と実験は、PIPLAファミリーが非微分可能モデルの潜在変数モデルにおけるパラメータ推定問題のデファクト選択であることを示している。
論文 参考訳(メタデータ) (2024-06-20T13:16:41Z) - Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up [0.0]
本稿では,ネストサンプリングアルゴリズムに特化してベイズ推論を高速化する新しい手法を提案する。
提案手法は,ベイズ推論過程における確率関数を動的に近似するために,フィードフォワードニューラルネットワークを用いてディープラーニングのパワーを利用する。
この実装はネストサンプリングアルゴリズムと統合され、単純な宇宙学のダークエネルギーモデルと多様な観測データセットの両方を用いて徹底的に評価されている。
論文 参考訳(メタデータ) (2024-05-06T09:14:58Z) - Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
本稿では、部分的に観察された酵素反応ネットワーク(SRN)に対する効率的なベイズ推論手法を開発する。
線形雑音近似(LNA)メタモデルを提案する。
マルコフ・チェイン・モンテカルロの収束を高速化するために、導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-05T01:54:21Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Surrogate Likelihoods for Variational Annealed Importance Sampling [11.144915453864854]
我々は他の変分パラメータと共同で学習できる代理可能性を導入する。
本手法は,確率的プログラミングフレームワークにおけるブラックボックス推論に適していることを示す。
論文 参考訳(メタデータ) (2021-12-22T19:49:45Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - A Variational View on Bootstrap Ensembles as Bayesian Inference [24.55506395666038]
本稿では,各モデル/粒子がパラメトリックブートストラップと先行の摂動によりデータの摂動に対応するアンサンブルに基づく手法を検討する。
実験により、アンサンブル法がベイズ近似の代替となることが確認された。
論文 参考訳(メタデータ) (2020-06-08T13:01:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。