Quantum-classical correspondence of a system of interacting bosons in a
triple-well potential
- URL: http://arxiv.org/abs/2105.10515v3
- Date: Tue, 12 Oct 2021 14:30:24 GMT
- Title: Quantum-classical correspondence of a system of interacting bosons in a
triple-well potential
- Authors: E. R. Castro, Jorge Chavez-Carlos, I. Roditi, Lea F. Santos, Jorge G.
Hirsch
- Abstract summary: We study the quantum-classical correspondence of an experimentally accessible system of interacting bosons in a tilted triple-well potential.
We get a better understanding of the different phases of the quantum system and how they could be used for quantum information science.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the quantum-classical correspondence of an experimentally accessible
system of interacting bosons in a tilted triple-well potential. With the
semiclassical analysis, we get a better understanding of the different phases
of the quantum system and how they could be used for quantum information
science. In the integrable limits, our analysis of the stationary points of the
semiclassical Hamiltonian reveals critical points associated with second-order
quantum phase transitions. In the nonintegrable domain, the system exhibits
crossovers. Depending on the parameters and quantities, the quantum-classical
correspondence holds for very few bosons. In some parameter regions, the ground
state is robust (highly sensitive) to changes in the interaction strength (tilt
amplitude), which may be of use for quantum information protocols (quantum
sensing).
Related papers
- Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Universal shot-noise limit for quantum metrology with local Hamiltonians [2.624076371876711]
We derive a universal and fundamental bound for the growth of the quantum Fisher information.
We prove that the precision cannot surpass the shot noise limit at all times in locally interacting quantum systems.
arXiv Detail & Related papers (2023-08-07T16:13:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Interaction-induced topological pumping in a solid-state quantum system [18.7657779101508]
Inter-particle interaction can profoundly alter the band structure of quantum many-body systems.
Here we demonstrate interaction-induced topological pumping in a solid-state quantum system comprising an array of 36 superconducting qubits.
arXiv Detail & Related papers (2023-03-08T13:57:13Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Quantum Multicritical Behavior for Coupled Optical Cavities with Driven
Laser Fields [3.811778212199368]
We propose a system that a quantized light field interacts with a two-level atomic ensemble coupled by microwave fields in optical cavities.
We find that the quantum critical points can evolve into a Lifshitz point if the Rabi frequency of the light field is periodically in time.
Remarkably, the texture of atomic pseudo-spins can be used to characterize the quantum critical behaviors of the system.
arXiv Detail & Related papers (2022-02-09T10:57:53Z) - Exact-WKB analysis for SUSY and quantum deformed potentials: Quantum
mechanics with Grassmann fields and Wess-Zumino terms [0.0]
Quantum deformed potentials arise naturally in quantum mechanical systems of one bosonic coordinate coupled to $N_f$ Grassmann valued fermionic coordinates.
Using exact WKB, we derive exact quantization condition and its median resummation.
For quantum deformed triple-well potential, we demonstrate the P-NP relation, by computing period integrals and Mellin transform.
arXiv Detail & Related papers (2021-11-10T20:35:38Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Quantum concepts in optical polarization [0.35180162330725556]
We comprehensively review the quantum theory of the polarization properties of light.
In particular, the classical degree of polarization produces unsatisfactory results in the quantum domain.
In intrinsically nonclassical states are explored and their potential applications in quantum technologies are discussed.
arXiv Detail & Related papers (2020-11-08T13:33:19Z) - Characterizing quantum correlations in spin chains [0.0]
We show that a single element of the density matrix carries the answer to how quantum is a chain of spins.
This method can be used to tailor and witness highly non-classical effects in many-body systems.
As a proof of principle, we investigate the extend of non-locality and entanglement in ground states and thermal states of experimentally accessible spin chains.
arXiv Detail & Related papers (2020-05-19T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.