Quantum Multicritical Behavior for Coupled Optical Cavities with Driven
Laser Fields
- URL: http://arxiv.org/abs/2202.04389v2
- Date: Fri, 2 Sep 2022 01:10:06 GMT
- Title: Quantum Multicritical Behavior for Coupled Optical Cavities with Driven
Laser Fields
- Authors: Yutao Hu, Yu Zhou, Wenchen Luo, Andrea Trombettoni, and Guoxiang Huang
- Abstract summary: We propose a system that a quantized light field interacts with a two-level atomic ensemble coupled by microwave fields in optical cavities.
We find that the quantum critical points can evolve into a Lifshitz point if the Rabi frequency of the light field is periodically in time.
Remarkably, the texture of atomic pseudo-spins can be used to characterize the quantum critical behaviors of the system.
- Score: 3.811778212199368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum phase transitions with multicritical points are fascinating phenomena
occurring in interacting quantum many-body systems. However, multicritical
points predicted by theory have been rarely verified experimentally; finding
multicritical points with specific behaviors and realizing their control
remains a challenging topic. Here, we propose a system that a quantized light
field interacts with a two-level atomic ensemble coupled by microwave fields in
optical cavities, which is described by a generalized Dicke model.
Multicritical points for the superradiant quantum phase transition are shown to
occur. We determine the number and position of these critical points and
demonstrate that they can be effectively manipulated through the tuning of
system parameters. Particularly, we find that the quantum critical points can
evolve into a Lifshitz point if the Rabi frequency of the light field is
modulated periodically in time. Remarkably, the texture of atomic pseudo-spins
can be used to characterize the quantum critical behaviors of the system. The
magnetic orders of the three phases around the Lifshitz point, represented by
the atomic pseudo-spins, are similar to those of an axial
next-nearest-neighboring Ising model. The results reported here are beneficial
for unveiling intriguing physics of quantum phase transitions and pave the way
towards to find novel quantum multicritical phenomena based on the generalized
Dicke model.
Related papers
- Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Born Machines for Periodic and Open XY Quantum Spin Chains [0.0]
We present a numerical study of the power of a quantum-inspired generative model known as the Born machine in learning quantum phases of matter.
Our results indicate that a Born machine based on matrix product states can successfully capture the quantum state across various phases of the XY Hamiltonian and close to a critical point.
arXiv Detail & Related papers (2021-12-10T04:05:53Z) - Quantum multicritical point in the two- and three-dimensional random
transverse-field Ising model [0.0]
Quantum multicritical points (QMCPs) emerge at the junction of two or more quantum phase transitions.
We characterize the QMCP of an interacting heterogeneous quantum system in two and three dimensions.
The QMCP of the RTIM is found to exhibit ultraslow, activated dynamic scaling, governed by an infinite disorder fixed point.
arXiv Detail & Related papers (2021-11-12T17:19:26Z) - Revealing higher-order light and matter energy exchanges using quantum
trajectories in ultrastrong coupling [0.0]
We extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling.
We analyze the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the quantum trajectories.
arXiv Detail & Related papers (2021-07-19T11:22:12Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Symmetry breaking patterns, tricriticalities and quadruple points in
quantum Rabi model with bias and nonlinear interaction [0.0]
We study the interplay of the bias and the nonlinear interaction with the linear coupling in the ground state.
We find that the full quantum-mechanical effect leads to novel transitions, tricriticalities and quadruple points.
arXiv Detail & Related papers (2020-10-03T16:08:56Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.