論文の概要: Uncertainty quantification for distributed regression
- arxiv url: http://arxiv.org/abs/2105.11425v1
- Date: Mon, 24 May 2021 17:33:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:27:30.314417
- Title: Uncertainty quantification for distributed regression
- Title(参考訳): 分散回帰に対する不確かさの定量化
- Authors: Valeriy Avanesov
- Abstract要約: 平均推定器の不確かさを定量化する完全データ駆動手法を提案する。
すなわち、所定の決定論的予測セットに基づいて、平均推定器によって得られる予測に対して、同時的要素単位の信頼バンドを構築する。
また,本解析の副産物として,分割・分散型カーネルリッジ回帰に対するsup-norm整合性結果を得る。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-growing size of the datasets renders well-studied learning
techniques, such as Kernel Ridge Regression, inapplicable, posing a serious
computational challenge. Divide-and-conquer is a common remedy, suggesting to
split the dataset into disjoint partitions, obtain the local estimates and
average them, it allows to scale-up an otherwise ineffective base approach. In
the current study we suggest a fully data-driven approach to quantify
uncertainty of the averaged estimator. Namely, we construct simultaneous
element-wise confidence bands for the predictions yielded by the averaged
estimator on a given deterministic prediction set. The novel approach features
rigorous theoretical guaranties for a wide class of base learners with Kernel
Ridge regression being a special case. As a by-product of our analysis we also
obtain a sup-norm consistency result for the divide-and-conquer Kernel Ridge
Regression. The simulation study supports the theoretical findings.
- Abstract(参考訳): データセットのサイズは増え続けており、Kernel Ridge Regressionのようなよく研究されている学習テクニックが適用不可能で、深刻な計算上の課題を呈している。
分割と分割は一般的な修正であり、データセットを結合しないパーティションに分割し、ローカルな推定値を取得して平均化することを提案している。
本研究では,平均推定値の不確かさを定量化するためのデータ駆動手法を提案する。
すなわち、与えられた決定論的予測セット上で平均推定値によって得られた予測に対して、同時に要素信頼帯を構成する。
この新しいアプローチは、カーネルリッジ回帰が特別な場合である幅広い基礎学習者に対する厳密な理論的保証を特徴としている。
また,本解析の副産物として,分割・対数Kernel Ridge回帰に対するsup-norm整合結果を得る。
シミュレーション研究は理論的な結果を支持する。
関連論文リスト
- Uncertainty estimation in satellite precipitation spatial prediction by combining distributional regression algorithms [3.8623569699070353]
データマージによって降水データセットを作成するエンジニアリングタスクに対して,分散回帰の概念を導入する。
本研究では,空間予測だけでなく,一般の予測問題にも有用な新しいアンサンブル学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-29T05:58:00Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - Uncertainty Estimation in Instance Segmentation with Star-convex Shapes [4.197316670989004]
ディープニューラルネットワークベースのアルゴリズムは、しばしば不確実な信頼レベルを持つ誤った予測を示す。
本研究は,星形インスタンスの位置で空間的確実性を推定することの課題に対処する。
本研究は、個別の確実性スコアに対する分数的確実性推定を組み合わせることが効果的な戦略であることを示す。
論文 参考訳(メタデータ) (2023-09-19T10:49:33Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Conformal Prediction with Missing Values [19.18178194789968]
まず,共形予測の限界カバレッジ保証が,不一致分布のインプットデータに当てはまることを示す。
次に、インプットされたデータに基づいてトレーニングされた普遍的に一貫した量子レグレッションアルゴリズムが、ピンボールリスクに対してベイズ最適であることを示す。
論文 参考訳(メタデータ) (2023-06-05T09:28:03Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Statistical Inference after Kernel Ridge Regression Imputation under
item nonresponse [0.76146285961466]
カーネルリッジ回帰法による非パラメトリックな計算手法を考察し、一貫した分散推定を提案する。
提案した分散推定器はエントロピー法を用いて密度比を推定する線形化手法に基づいている。
論文 参考訳(メタデータ) (2021-01-29T20:46:33Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。