論文の概要: IGO-QNN: Quantum Neural Network Architecture for Inductive Grover
Oracularization
- arxiv url: http://arxiv.org/abs/2105.11603v2
- Date: Wed, 26 May 2021 15:25:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 08:38:37.306854
- Title: IGO-QNN: Quantum Neural Network Architecture for Inductive Grover
Oracularization
- Title(参考訳): IGO-QNN: Inductive Grover Oracularizationのための量子ニューラルネットワークアーキテクチャ
- Authors: Areeq I. Hasan
- Abstract要約: Inductive Grover Oracular quantum Neural Network (IGO-QNN) という,Groverのアルゴリズムを機械学習フレームワークに統合する新しいパラダイムを提案する。
このモデルは、動的グロバーの探索オラクルを符号化するために、エンタングルシナプスを介して密結合されたパラメータ化された量子ニューロンの層が隠された変分量子回路を定義する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel paradigm of integration of Grover's algorithm in a machine
learning framework: the inductive Grover oracular quantum neural network
(IGO-QNN). The model defines a variational quantum circuit with hidden layers
of parameterized quantum neurons densely connected via entangle synapses to
encode a dynamic Grover's search oracle that can be trained from a set of
database-hit training examples. This widens the range of problem applications
of Grover's unstructured search algorithm to include the vast majority of
problems lacking analytic descriptions of solution verifiers, allowing for
quadratic speed-up in unstructured search for the set of search problems with
relationships between input and output spaces that are tractably underivable
deductively. This generalization of Grover's oracularization may prove
particularly effective in deep reinforcement learning, computer vision, and,
more generally, as a feature vector classifier at the top of an existing model.
- Abstract(参考訳): 本稿では,Groverのアルゴリズムを機械学習フレームワークに統合する新たなパラダイムとして,インダクティブGrover Oracular quantum Neural Network (IGO-QNN)を提案する。
このモデルは、パラメータ化された量子ニューロンの隠れた層をエンタングルシナプスを介して密結合し、データベースヒットのトレーニング例からトレーニング可能な動的グローバー探索オラクルを符号化する変分量子回路を定義する。
これにより、Groverの非構造化探索アルゴリズムの幅広い問題適用範囲を拡大し、解検証器の分析記述に欠ける問題の大部分を含むようにし、不構造化探索における2次的なスピードアップを可能にした。
グローバーのoracularizationのこの一般化は、深層強化学習、コンピュータビジョン、より一般的には、既存のモデルの上部にある特徴ベクトル分類器として特に有効であるかもしれない。
関連論文リスト
- Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Development of Quantum Circuits for Perceptron Neural Network Training,
Based on the Principles of Grover's Algorithm [0.0]
本稿では,ニューラルネットワークのトレーニングのための量子回路の形成の可能性を明らかにする。
パーセプトロンは、ニューラルネットワークの例のアーキテクチャとして選ばれた。
論文 参考訳(メタデータ) (2021-10-15T13:07:18Z) - Development and Training of Quantum Neural Networks, Based on the
Principles of Grover's Algorithm [0.0]
本稿では,ニューラルネットワークのトレーニングプロセスと,量子回路として解釈されたニューラルネットワークの機能構造を組み合わせることを提案する。
ニューラルネットワークの単純な例として、この概念を示すために、トレーニング可能なパラメータが1つあるパーセプトロン(隠されたニューロンに接続されたシナプスの重さ)がある。
論文 参考訳(メタデータ) (2021-10-01T14:08:43Z) - Quantum neural networks with multi-qubit potentials [0.0]
量子パーセプトロンにおけるマルチキュービットポテンシャルの存在は、より効率的な情報処理タスクを可能にすることを示す。
このネットワークアーキテクチャの単純化は、接続性の問題に対処し、量子ニューラルネットワークをスケールアップする道を開く。
論文 参考訳(メタデータ) (2021-05-06T15:30:06Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Markovian Quantum Neuroevolution for Machine Learning [0.0]
本稿では,機械学習タスクに最適な量子ニューラルネットワークを自律的に見つける量子神経進化アルゴリズムを提案する。
特に、量子回路と有向グラフの1対1マッピングを確立し、適切なゲート列を見つける問題を減らす。
論文 参考訳(メタデータ) (2020-12-30T12:42:38Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。