論文の概要: Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
- arxiv url: http://arxiv.org/abs/2403.18963v3
- Date: Tue, 21 Jan 2025 02:28:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:17:28.733592
- Title: Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
- Title(参考訳): 時空間ニューラルネットワーク信号モデルの動的挙動推定のための量子重ね合わせの活用
- Authors: Gabriel A. Silva,
- Abstract要約: 本稿では,神経生物学および機械学習に関連する大規模ネットワークのダイナミクスに関する新しい問題クラスを導入,解決する。
これらの問題を量子重ね合わせを利用して定式化し,Deutsch-Jozsa と Grover の量子アルゴリズムを用いて効率的に解けることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The exploration of new problem classes for quantum computation is an active area of research. In this paper, we introduce and solve a novel problem class related to dynamics on large-scale networks relevant to neurobiology and machine learning. Specifically, we ask if a network can sustain inherent dynamic activity beyond some arbitrary observation time or if the activity ceases through quiescence or saturation via an epileptic-like state. We show that this class of problems can be formulated and structured to take advantage of quantum superposition and solved efficiently using the Deutsch-Jozsa and Grover quantum algorithms. To do so, we extend their functionality to address the unique requirements of how input (sub)sets into the algorithms must be mathematically structured while simultaneously constructing the inputs so that measurement outputs can be interpreted as meaningful properties of the network dynamics. This, in turn, allows us to answer the question we pose.
- Abstract(参考訳): 量子計算の新しい問題クラスの探索は研究の活発な領域である。
本稿では,神経生物学および機械学習に関連する大規模ネットワークのダイナミクスに関する新しい問題クラスを導入,解決する。
具体的には、ネットワークが任意の観測時間を超えて固有な動的活動を維持することができるのか、あるいは、その活動が懐疑的な状態を通じてキネッセンスや飽和によって止まるのかを問う。
これらの問題を量子重ね合わせを利用して定式化し,Deutsch-Jozsa と Grover の量子アルゴリズムを用いて効率的に解けることを示す。
そのため,アルゴリズムの入力(サブ)セットを数学的に構成すると同時に,測定出力をネットワーク力学の有意義な特性として解釈できるように,それらの機能を拡張して,アルゴリズムへの入力(サブ)セットの数学的構成の独特な要件に対処する。
こうすることで、私たちが提案する質問に答えることができます。
関連論文リスト
- Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
本稿では,散逸性量子ニューラルネットワークに基づく完全量子リカレントニューラルネットワークを提案する。
これらのアルゴリズムが複雑な量子過程をメモリで学習する可能性を実証する。
数値シミュレーションにより、我々の量子リカレントニューラルネットワークは、小さなトレーニングセットから一般化する顕著な能力を示すことが示された。
論文 参考訳(メタデータ) (2023-01-19T16:58:39Z) - Quantum Neural Networks -- Computational Field Theory and Dynamics [0.0]
量子人工ニューラルネットワークの力学系としての形式化が開発されている。
量子コンピュータ科学、量子複雑性研究、量子技術、神経科学にもその意味がある。
論文 参考訳(メタデータ) (2022-03-19T10:37:23Z) - Quantum activation functions for quantum neural networks [0.0]
情報を符号化する状態を測定することなく、必要な精度で解析関数を近似する方法を示す。
この結果は,ゲートモデル量子コンピュータのアーキテクチャにおける人工ニューラルネットワークの科学を再放送するものである。
論文 参考訳(メタデータ) (2022-01-10T23:55:49Z) - On quantum neural networks [91.3755431537592]
量子ニューラルネットワークの概念は、その最も一般的な関数の観点から定義されるべきである。
我々の推論は、量子力学におけるファインマン経路積分定式化の利用に基づいている。
論文 参考訳(メタデータ) (2021-04-12T18:30:30Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。