論文の概要: Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
- arxiv url: http://arxiv.org/abs/2403.18963v3
- Date: Tue, 21 Jan 2025 02:28:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:17:28.733592
- Title: Leveraging Quantum Superposition to Infer the Dynamic Behavior of a Spatial-Temporal Neural Network Signaling Model
- Title(参考訳): 時空間ニューラルネットワーク信号モデルの動的挙動推定のための量子重ね合わせの活用
- Authors: Gabriel A. Silva,
- Abstract要約: 本稿では,神経生物学および機械学習に関連する大規模ネットワークのダイナミクスに関する新しい問題クラスを導入,解決する。
これらの問題を量子重ね合わせを利用して定式化し,Deutsch-Jozsa と Grover の量子アルゴリズムを用いて効率的に解けることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The exploration of new problem classes for quantum computation is an active area of research. In this paper, we introduce and solve a novel problem class related to dynamics on large-scale networks relevant to neurobiology and machine learning. Specifically, we ask if a network can sustain inherent dynamic activity beyond some arbitrary observation time or if the activity ceases through quiescence or saturation via an epileptic-like state. We show that this class of problems can be formulated and structured to take advantage of quantum superposition and solved efficiently using the Deutsch-Jozsa and Grover quantum algorithms. To do so, we extend their functionality to address the unique requirements of how input (sub)sets into the algorithms must be mathematically structured while simultaneously constructing the inputs so that measurement outputs can be interpreted as meaningful properties of the network dynamics. This, in turn, allows us to answer the question we pose.
- Abstract(参考訳): 量子計算の新しい問題クラスの探索は研究の活発な領域である。
本稿では,神経生物学および機械学習に関連する大規模ネットワークのダイナミクスに関する新しい問題クラスを導入,解決する。
具体的には、ネットワークが任意の観測時間を超えて固有な動的活動を維持することができるのか、あるいは、その活動が懐疑的な状態を通じてキネッセンスや飽和によって止まるのかを問う。
これらの問題を量子重ね合わせを利用して定式化し,Deutsch-Jozsa と Grover の量子アルゴリズムを用いて効率的に解けることを示す。
そのため,アルゴリズムの入力(サブ)セットを数学的に構成すると同時に,測定出力をネットワーク力学の有意義な特性として解釈できるように,それらの機能を拡張して,アルゴリズムへの入力(サブ)セットの数学的構成の独特な要件に対処する。
こうすることで、私たちが提案する質問に答えることができます。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
本稿では,散逸性量子ニューラルネットワークに基づく完全量子リカレントニューラルネットワークを提案する。
これらのアルゴリズムが複雑な量子過程をメモリで学習する可能性を実証する。
数値シミュレーションにより、我々の量子リカレントニューラルネットワークは、小さなトレーニングセットから一般化する顕著な能力を示すことが示された。
論文 参考訳(メタデータ) (2023-01-19T16:58:39Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Machine-learning assisted quantum control in random environment [3.8580539160777625]
本稿では,ニューラルネットワークに基づく機械学習アルゴリズムの概念実証と解析について紹介する。
畳み込みニューラルネットワークは、障害を認識できるため、この問題を解決可能であることを示す。
提案アルゴリズムの精度は障害パターンの高次元マッピングにより向上することを示した。
論文 参考訳(メタデータ) (2022-02-21T15:12:39Z) - Quantum activation functions for quantum neural networks [0.0]
情報を符号化する状態を測定することなく、必要な精度で解析関数を近似する方法を示す。
この結果は,ゲートモデル量子コンピュータのアーキテクチャにおける人工ニューラルネットワークの科学を再放送するものである。
論文 参考訳(メタデータ) (2022-01-10T23:55:49Z) - Unsupervised learning of correlated quantum dynamics on disordered
lattices [0.0]
乱格子上で共伝播する量子粒子は、量子統計学、粒子間相互作用、障害の間の相互作用による複雑な非古典的相関を発達させる。
本稿では,これらの相関関係を学習し,物理的制御パラメータを教師なしで同定する深層学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-13T17:48:11Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。