論文の概要: Quantum Approximate Optimization Algorithm with Adaptive Bias Fields
- arxiv url: http://arxiv.org/abs/2105.11946v3
- Date: Tue, 28 Jun 2022 06:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 21:01:27.154109
- Title: Quantum Approximate Optimization Algorithm with Adaptive Bias Fields
- Title(参考訳): 適応バイアス場を持つ量子近似最適化アルゴリズム
- Authors: Yunlong Yu, Chenfeng Cao, Carter Dewey, Xiang-Bin Wang, Nic Shannon,
Robert Joynt
- Abstract要約: 量子近似最適化アルゴリズム(QAOA)は、単純な多ビット波動関数を、難解な古典的最適化問題の解を符号化する関数に変換する。
本稿では, 演算子自身を局所場を含むように更新し, 1ステップの最後に測定波動関数からの情報を用いて後段の演算子を改善することにより, QAOAを改良する。
- 参考スコア(独自算出の注目度): 4.03537866744963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) transforms a simple
many-qubit wavefunction into one which encodes a solution to a difficult
classical optimization problem. It does this by optimizing the schedule
according to which two unitary operators are alternately applied to the qubits.
In this paper, the QAOA is modified by updating the operators themselves to
include local fields, using information from the measured wavefunction at the
end of one iteration step to improve the operators at later steps. It is shown
by numerical simulation on MaxCut problems that, for a fixed accuracy, this
procedure decreases the runtime of QAOA very substantially. This improvement
appears to increase with the problem size. Our method requires essentially the
same number of quantum gates per optimization step as the standard QAOA, and no
additional measurements. This modified algorithm enhances the prospects for
quantum advantage for certain optimization problems.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、単純な多ビット波動関数を、難しい古典的最適化問題の解を符号化する関数に変換する。
これは、2つのユニタリ演算子がキュービットに交互に適用されるようにスケジュールを最適化することで実現される。
本稿では, 演算子自身を局所場を含むように更新し, 1つの繰り返しステップの最後に測定波動関数からの情報を用いて, 後続のステップで演算子を改善することでQAOAを改良する。
MaxCut問題に関する数値シミュレーションにより、この手順は固定精度でQAOAのランタイムを著しく減少させることを示した。
この改善は問題の大きさによって増加するようだ。
本手法は標準qaoaと同じ最適化ステップの量子ゲート数を本質的に必要とし,追加測定は行わない。
この修正アルゴリズムは、特定の最適化問題に対する量子優位の可能性を高める。
関連論文リスト
- Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
量子近似最適化アルゴリズム(QAOA)は、目的最適化問題の解法として設計されている。
その結果,アルゴリズムは速度,精度,効率,安定性の点で従来の近似よりも大幅に優れていた。
この研究はQAOAの全パワーを解き放つのに役立ち、実践的な古典的なタスクにおいて量子的優位性を達成するための道を開く。
論文 参考訳(メタデータ) (2023-03-27T02:14:56Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
変分量子固有解法(VQE)に基づくアルゴリズムの評価と改良を行った。
我々は,問題を変分アンサッツにエンコードすることで生じる数値不安定性を強調する。
より少ないイテレーションでアンザッツの基底状態を求めるための古典的な最適化手法を提案する。
論文 参考訳(メタデータ) (2022-10-21T08:54:12Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - How Much Entanglement Do Quantum Optimization Algorithms Require? [0.0]
ADAPT-QAOA施行時に発生する絡みについて検討した。
この柔軟性を漸進的に制限することにより、初期におけるより多くの絡み合いエントロピーが、後段におけるより速い収束と一致していることが分かる。
論文 参考訳(メタデータ) (2022-05-24T18:00:02Z) - Stochastic optimization algorithms for quantum applications [0.0]
本稿では、一階法、二階法、量子自然勾配最適化法の使用法を概観し、複素数体で定義される新しいアルゴリズムを提案する。
全ての手法の性能は、変分量子固有解法、量子状態の量子制御、および量子状態推定に応用して評価される。
論文 参考訳(メタデータ) (2022-03-11T16:17:05Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。