論文の概要: Practical Convex Formulation of Robust One-hidden-layer Neural Network
Training
- arxiv url: http://arxiv.org/abs/2105.12237v1
- Date: Tue, 25 May 2021 22:06:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 13:36:10.137616
- Title: Practical Convex Formulation of Robust One-hidden-layer Neural Network
Training
- Title(参考訳): 頑健な一層ニューラルネットワークトレーニングの実用的凸定式化
- Authors: Yatong Bai, Tanmay Gautam, Yu Gai, Somayeh Sojoudi
- Abstract要約: 本研究では,一層型スカラーアウトプット完全接続型ReLULUニューラルネットワークのトレーニングを,有限次元凸プログラムとして再構成可能であることを示す。
我々は「敵の訓練」問題を効率的に解くために凸最適化手法を導出する。
本手法は二項分類と回帰に応用でき、現在の対角訓練法に代わる手段を提供する。
- 参考スコア(独自算出の注目度): 12.71266194474117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has shown that the training of a one-hidden-layer, scalar-output
fully-connected ReLU neural network can be reformulated as a finite-dimensional
convex program. Unfortunately, the scale of such a convex program grows
exponentially in data size. In this work, we prove that a stochastic procedure
with a linear complexity well approximates the exact formulation. Moreover, we
derive a convex optimization approach to efficiently solve the "adversarial
training" problem, which trains neural networks that are robust to adversarial
input perturbations. Our method can be applied to binary classification and
regression, and provides an alternative to the current adversarial training
methods, such as Fast Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD). We demonstrate in experiments that the proposed method achieves
a noticeably better adversarial robustness and performance than the existing
methods.
- Abstract(参考訳): 近年の研究では、一層型スカラー出力完全連結ReLUニューラルネットワークのトレーニングを有限次元凸プログラムとして再構成できることが示されている。
残念ながら、このような凸プログラムの規模はデータサイズで指数関数的に増加する。
本研究では,線形複雑性を持つ確率的手続きが正確な定式化によく近いことを証明する。
さらに、逆入力摂動に頑健なニューラルネットワークを訓練する「逆トレーニング」問題を効率的に解くための凸最適化手法を導出する。
本手法は,バイナリ分類と回帰に適用でき,高速勾配符号法 (fgsm) や投影勾配降下法 (pgd) といった,現在の敵対的訓練法に代わるものを提供する。
実験では,提案手法が従来の手法よりも著しく頑健性と性能を発揮できることを実証する。
関連論文リスト
- Approximated Likelihood Ratio: A Forward-Only and Parallel Framework for Boosting Neural Network Training [30.452060061499523]
本稿では、勾配推定における計算およびメモリ要求を軽減するために、LR法を近似する手法を提案する。
ニューラルネットワークトレーニングにおける近似手法の有効性を実験により実証した。
論文 参考訳(メタデータ) (2024-03-18T23:23:50Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep Unrolling(ディープ・アンローリング)は、トレーニング可能なニューラルネットワークの層に切り捨てられた反復アルゴリズムをアンロールする、新たな学習最適化手法である。
アンロールネットワークの収束保証と一般化性は、いまだにオープンな理論上の問題であることを示す。
提案した制約の下で訓練されたアンロールアーキテクチャを2つの異なるアプリケーションで数値的に評価する。
論文 参考訳(メタデータ) (2023-12-25T18:51:23Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Robust Explanation Constraints for Neural Networks [33.14373978947437]
ニューラルネットワークの意図で使われるポストホックな説明法は、しばしば彼らの出力を信頼するのに役立つと言われている。
我々のトレーニング方法は、ニューラルネットワークを学習できる唯一の方法であり、6つのテストネットワークでテストされた堅牢性に関する洞察を持つ。
論文 参考訳(メタデータ) (2022-12-16T14:40:25Z) - Deep unfolding as iterative regularization for imaging inverse problems [6.485466095579992]
ディープ展開法は、反復アルゴリズムを通じてディープニューラルネットワーク(DNN)の設計を導く。
展開されたDNNが安定して収束することを証明する。
提案手法が従来の展開法より優れていることを示す。
論文 参考訳(メタデータ) (2022-11-24T07:38:47Z) - Adaptive Learning Rate and Momentum for Training Deep Neural Networks [0.0]
本研究では,非線形共役勾配(CG)フレームワークによる高速トレーニング手法を開発した。
画像分類データセットの実験により,本手法は他の局所解法よりも高速な収束が得られることが示された。
論文 参考訳(メタデータ) (2021-06-22T05:06:56Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。