Unconventional pairing in few-fermion systems tuned by external
confinement
- URL: http://arxiv.org/abs/2105.12519v4
- Date: Fri, 12 Nov 2021 12:21:43 GMT
- Title: Unconventional pairing in few-fermion systems tuned by external
confinement
- Authors: Jacek Dobrzyniecki, Giuliano Orso, Tomasz Sowi\'nski
- Abstract summary: We study the ground-state properties of a two-component system of a few ultra-cold fermions with attractive interactions.
We show that, by ramping up an external potential barrier felt by one of the components, it is possible to induce regions of exotic superfluid phases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the ground-state properties of a two-component one-dimensional
system of a few ultra-cold fermions with attractive interactions. We show that,
by ramping up an external potential barrier felt by one of the components, it
is possible to induce regions of exotic superfluid phases, characterized by a
tunable finite net momentum of the Cooper pair, without changing the overall
spin populations. We show that these phases, which are the few-body analogs of
the celebrated Fulde-Ferrell-Larkin-Ovchinnikov state, can be distinguished by
analyzing a specific two-particle correlation encoded in the noise correlation
function. Our theoretical results can be addressed in current experiments with
cold atoms confined in spin-selective optical traps.
Related papers
- Feshbach hypothesis of high-Tc superconductivity in cuprates [0.0]
We present a Feshbach perspective on the origin of strong pairing in Fermi-Hubbard type models.
Existing experimental and numerical results on hole-doped cuprates lead us to conjecture the existence of a light, long-lived, low-energy excited state of two holes.
The emergent Feshbach resonance we propose could also underlie superconductivity in other doped antiferromagnetic Mott insulators.
arXiv Detail & Related papers (2023-12-05T18:59:59Z) - Pairing from repulsion in a two-dimensional Fermi gas with soft-core interactions [3.4186533395054566]
We investigate a model many-body system of Fermi gas in two dimensions, where the bare two-body interaction is repulsive and takes the form of a soft-core disk potential.
We obtain the zero temperature phase diagram of this model by numerical functional renormalization group (FRG)
We trace the stabilization and enhancement of $f$- and $h$-wave pairing back to the momentum dependence of the bare interaction.
arXiv Detail & Related papers (2023-09-29T16:08:45Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Unconventional pairing in few-fermion systems at finite temperature [0.0]
Two-component mixtures of fermionic particles confined in a one-dimensional harmonic trap are investigated.
Specific non-classical pairing correlations are analyzed in terms of the noise correlations.
It is shown that along with increasing temperature, any imbalanced system hosting Fulde-Ferrel-Larkin-Ovchinnikov pairs crossovers to a standard Bardeen-Cooper-Schrieffer one characterized by zero net momentum of resulting pairs.
arXiv Detail & Related papers (2022-02-15T18:37:04Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.