論文の概要: Spectral Representation Learning for Conditional Moment Models
- arxiv url: http://arxiv.org/abs/2210.16525v1
- Date: Sat, 29 Oct 2022 07:48:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 16:23:01.732316
- Title: Spectral Representation Learning for Conditional Moment Models
- Title(参考訳): 条件モーメントモデルのためのスペクトル表現学習
- Authors: Ziyu Wang, Yucen Luo, Yueru Li, Jun Zhu, Bernhard Sch\"olkopf
- Abstract要約: 本研究では,不適切度を制御した表現を自動学習する手法を提案する。
本手法は,条件付き期待演算子のスペクトル分解によって定義される線形表現を近似する。
この表現をデータから効率的に推定できることを示し、得られた推定値に対してL2整合性を確立する。
- 参考スコア(独自算出の注目度): 33.34244475589745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many problems in causal inference and economics can be formulated in the
framework of conditional moment models, which characterize the target function
through a collection of conditional moment restrictions. For nonparametric
conditional moment models, efficient estimation has always relied on preimposed
conditions on various measures of ill-posedness of the hypothesis space, which
are hard to validate when flexible models are used. In this work, we address
this issue by proposing a procedure that automatically learns representations
with controlled measures of ill-posedness. Our method approximates a linear
representation defined by the spectral decomposition of a conditional
expectation operator, which can be used for kernelized estimators and is known
to facilitate minimax optimal estimation in certain settings. We show this
representation can be efficiently estimated from data, and establish L2
consistency for the resulting estimator. We evaluate the proposed method on
proximal causal inference tasks, exhibiting promising performance on
high-dimensional, semi-synthetic data.
- Abstract(参考訳): 因果推論や経済学における多くの問題は条件モーメントモデルの枠組みで定式化することができる。
非パラメトリック条件モーメントモデルでは、効率的な推定は常に、フレキシブルモデルを用いた場合の検証が困難である仮説空間の不備の様々な測度に関する前提条件に依存している。
そこで本研究では,不適切性の制御によって表現を自動的に学習する手法を提案する。
本手法は,条件付き期待作用素のスペクトル分解によって定義される線形表現を近似する手法であり,任意の条件における最小最適推定を容易にすることが知られている。
この表現をデータから効率的に推定できることを示し、得られた推定値に対してL2整合性を確立する。
提案手法は近位因果推論タスクにおいて,高次元半合成データに対して有望な性能を示す。
関連論文リスト
- Uncertainty Quantification of Surrogate Models using Conformal Prediction [7.445864392018774]
我々は,モデルに依存しない方法で予測を満足する共形予測フレームワークを定式化し,ほぼゼロの計算コストを必要とする。
本稿では,決定論的モデルに対する統計的に有効なエラーバーを提供するとともに,確率論的モデルのエラーバーに対する保証を作成することを検討する。
論文 参考訳(メタデータ) (2024-08-19T10:46:19Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
二重確率点過程は、ランダム強度関数の実現を前提とした不均一過程として空間領域上の事象の発生をモデル化する。
既存の二重確率空間モデルの実装は、計算的に要求され、しばしば理論的な保証が制限され、または制限的な仮定に依存している。
論文 参考訳(メタデータ) (2023-06-11T19:48:39Z) - BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference [0.0]
シミュレーションに基づく推論で生じるモデル誤特定のタイプを概念化し、これらの誤特定の下でベイズフローフレームワークの性能を体系的に検討する。
本稿では、潜在データ空間に確率的構造を課し、最大平均不一致(MMD)を利用して破滅的な誤特定を検知する拡張最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T13:25:27Z) - Identifiable Energy-based Representations: An Application to Estimating
Heterogeneous Causal Effects [83.66276516095665]
条件付き平均治療効果(CATEs)は、多数の個体にまたがる不均一性について理解することができる。
典型的なCATE学習者は、CATEが識別可能であるために、すべての共起変数が測定されていると仮定する。
本稿では,ノイズコントラッシブ損失関数を用いて,変数の低次元表現を学習するエネルギーベースモデルを提案する。
論文 参考訳(メタデータ) (2021-08-06T10:39:49Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
厳密な頻繁な統計的保証を満たす校正手法を開発するための枠組みを開発する。
本手法は,書籍市場シミュレータのキャリブレーションへの応用を含む,いくつかの数値例で実証する。
論文 参考訳(メタデータ) (2021-05-27T00:59:29Z) - The Variational Method of Moments [65.91730154730905]
条件モーメント問題は、観測可能量の観点から構造因果パラメータを記述するための強力な定式化である。
OWGMMの変動最小値再構成により、条件モーメント問題に対する非常に一般的な推定器のクラスを定義する。
同じ種類の変分変換に基づく統計的推測のためのアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-12-17T07:21:06Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。