論文の概要: Evaluation of concept drift adaptation for acoustic scene classifier
based on Kernel Density Drift Detection and Combine Merge Gaussian Mixture
Model
- arxiv url: http://arxiv.org/abs/2105.13220v1
- Date: Thu, 27 May 2021 15:09:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 22:21:00.195706
- Title: Evaluation of concept drift adaptation for acoustic scene classifier
based on Kernel Density Drift Detection and Combine Merge Gaussian Mixture
Model
- Title(参考訳): 核密度ドリフト検出とコンバイン・ガウス混合モデルに基づく音響シーン分類器の概念ドリフト適応の評価
- Authors: Ibnu Daqiqil Id, Masanobu Abe, Sunao Hara
- Abstract要約: 単純で段階的な概念ドリフトは、繰り返し発生する概念ドリフトよりもアルファ値の小さいパターンを持つ。
高周波モデル適応は過度な問題を引き起こす可能性がある。
- 参考スコア(独自算出の注目度): 7.562843347215287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on the experimental results, all concepts drift types have their
respective hyperparameter configurations. Simple and gradual concept drift have
similar pattern which requires a smaller {\alpha} value than recurring concept
drift because, in this type of drift, a new concept appear continuously, so it
needs a high-frequency model adaptation. However, in recurring concepts, the
new concept may repeat in the future, so the lower frequency adaptation is
better. Furthermore, high-frequency model adaptation could lead to an
overfitting problem. Implementing CMGMM component pruning mechanism help to
control the number of the active component and improve model performance.
- Abstract(参考訳): 実験結果に基づいて、ドリフト型はそれぞれのハイパーパラメータ構成を持つ。
単純で漸進的な概念ドリフトは、このタイプのドリフトでは、新しい概念が連続的に現れるため、高頻度モデル適応が必要であるため、反復的な概念ドリフトよりもより小さい「アルファ」値を必要とする同様のパターンを持つ。
しかし、反復する概念では、新しい概念が将来繰り返される可能性があり、より低い周波数適応が良い。
さらに、高周波モデル適応は過度な問題を引き起こす可能性がある。
cmgmmコンポーネントのプルーニング機構の実装は、アクティブコンポーネントの数を制御し、モデルパフォーマンスを改善するのに役立つ。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Rethinking Model Re-Basin and Linear Mode Connectivity [1.1510009152620668]
我々は再正規化を再スケーリングと再シフトに分解し、再スケーリングが再正規化に重要な役割を果たしていることを明らかにする。
統合モデルでは, 活性化崩壊とマグニチュード崩壊の問題に悩まされている。
本稿では,リベースとプルーニングを統一する新たな視点を提案し,軽量で効果的なポストプルーニング手法を導出する。
論文 参考訳(メタデータ) (2024-02-05T17:06:26Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - Employing chunk size adaptation to overcome concept drift [2.277447144331876]
ブロックベースのデータストリーム分類アルゴリズムに適応可能な新しいチャンク適応復元フレームワークを提案する。
提案アルゴリズムは,概念ドリフト検出時のデータチャンクサイズを調整し,その変更が使用済みモデルの予測性能に与える影響を最小限に抑える。
論文 参考訳(メタデータ) (2021-10-25T12:36:22Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Learning Parameter Distributions to Detect Concept Drift in Data Streams [13.20231558027132]
実コンセプトドリフト検出のための新しいフレームワークであるERICSを提案する。
予測モデルのパラメータをランダム変数として扱うことにより、最適パラメータの分布の変化に対応する概念ドリフトが示される。
ERICSはまた、既存のアプローチよりも大きな利点である入力レベルで概念ドリフトを検出することができる。
論文 参考訳(メタデータ) (2020-10-19T11:19:16Z) - Quasi-symplectic Langevin Variational Autoencoder [7.443843354775884]
変分オートエンコーダ(VAE)は、ニューラルネットワーク研究において非常に人気があり、よく研究されている生成モデルである。
低分散証拠低境界(ELBO)構築の難しさに対処することが求められている。
論文 参考訳(メタデータ) (2020-09-02T12:13:27Z) - Dynamic Model Pruning with Feedback [64.019079257231]
余分なオーバーヘッドを伴わずにスパーストレーニングモデルを生成する新しいモデル圧縮法を提案する。
CIFAR-10 と ImageNet を用いて本手法の評価を行い,得られたスパースモデルが高密度モデルの最先端性能に到達可能であることを示す。
論文 参考訳(メタデータ) (2020-06-12T15:07:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。