論文の概要: Learning Parameter Distributions to Detect Concept Drift in Data Streams
- arxiv url: http://arxiv.org/abs/2010.09388v1
- Date: Mon, 19 Oct 2020 11:19:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 20:55:07.228978
- Title: Learning Parameter Distributions to Detect Concept Drift in Data Streams
- Title(参考訳): データストリームにおける概念ドリフト検出のための学習パラメータ分布
- Authors: Johannes Haug and Gjergji Kasneci
- Abstract要約: 実コンセプトドリフト検出のための新しいフレームワークであるERICSを提案する。
予測モデルのパラメータをランダム変数として扱うことにより、最適パラメータの分布の変化に対応する概念ドリフトが示される。
ERICSはまた、既存のアプローチよりも大きな利点である入力レベルで概念ドリフトを検出することができる。
- 参考スコア(独自算出の注目度): 13.20231558027132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data distributions in streaming environments are usually not stationary. In
order to maintain a high predictive quality at all times, online learning
models need to adapt to distributional changes, which are known as concept
drift. The timely and robust identification of concept drift can be difficult,
as we never have access to the true distribution of streaming data. In this
work, we propose a novel framework for the detection of real concept drift,
called ERICS. By treating the parameters of a predictive model as random
variables, we show that concept drift corresponds to a change in the
distribution of optimal parameters. To this end, we adopt common measures from
information theory. The proposed framework is completely model-agnostic. By
choosing an appropriate base model, ERICS is also capable to detect concept
drift at the input level, which is a significant advantage over existing
approaches. An evaluation on several synthetic and real-world data sets
suggests that the proposed framework identifies concept drift more effectively
and precisely than various existing works.
- Abstract(参考訳): ストリーミング環境でのデータ配信は通常定常的ではない。
常に高い予測品質を維持するために、オンライン学習モデルは、概念ドリフトとして知られる分散的変化に適応する必要がある。
ストリーミングデータの真の分散にアクセスできないため、タイムリーでロバストなコンセプトドリフトの識別は難しくなります。
本研究では,実コンセプトドリフト検出のための新しいフレームワークであるERICSを提案する。
予測モデルのパラメータを確率変数として扱うことにより,概念ドリフトが最適パラメータ分布の変化に対応していることを示す。
この目的のために、情報理論からの共通測度を採用する。
提案するフレームワークは完全にモデルに依存しない。
適切なベースモデルを選択することで、ERICSは入力レベルで概念ドリフトを検出することができる。
いくつかの合成および実世界のデータセットに対する評価は,提案フレームワークが既存の様々な研究よりも効果的かつ正確に概念ドリフトを特定することを示唆している。
関連論文リスト
- Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset [98.52916361979503]
非定常性を自動的にモデル化し適応する新しい学習手法を導入する。
非定常的・非政治的強化学習環境において,本手法が有効であることを示す。
論文 参考訳(メタデータ) (2024-11-06T16:32:40Z) - Online Drift Detection with Maximum Concept Discrepancy [13.48123472458282]
最大概念差に基づく新しい概念ドリフト検出手法であるMDD-DDを提案する。
本手法は,概念埋め込みのコントラスト学習により,様々な形態のコンセプトドリフトを適応的に同定することができる。
論文 参考訳(メタデータ) (2024-07-07T13:57:50Z) - METER: A Dynamic Concept Adaptation Framework for Online Anomaly
Detection [25.022228143354123]
リアルタイム分析と意思決定は、データストリームのドリフトを効率的かつ効果的に処理するために、オンラインの異常検出を必要とする。
既存のアプローチは、検出能力の制限と、進化するデータストリームへの適応の遅さによって制約されることが多い。
我々は,OADの新しいパラダイムを導入した新しい動的概念適応フレームワークであるMETERを紹介する。
論文 参考訳(メタデータ) (2023-12-28T05:09:31Z) - Unsupervised Unlearning of Concept Drift with Autoencoders [5.41354952642957]
コンセプトドリフトは、将来のサンプルのデータストリームに影響を与えるデータ分散の変化を指す。
本稿では,世界レベルでの教師なしおよびモデルに依存しないドリフト適応手法を提案する。
論文 参考訳(メタデータ) (2022-11-23T14:52:49Z) - Change Detection for Local Explainability in Evolving Data Streams [72.4816340552763]
局所的特徴帰属法はポストホックやモデルに依存しない説明法として人気がある。
ローカルな属性が、ストリーミングやオンラインアプリケーションのような、現実的で絶えず変化する設定でどのように振る舞うかは、しばしば不明である。
局所変化と概念ドリフトを検出するフレキシブルでモデルに依存しないCDLEEDSを提案する。
論文 参考訳(メタデータ) (2022-09-06T18:38:34Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
ストリーミング知覚は,ビデオオンライン知覚の1つの指標として,レイテンシと精度を共同評価するために提案される。
ストリーミング知覚のためのシンプルで効果的なフレームワークを構築します。
提案手法はArgoverse-HDデータセット上での競合性能を実現し,強力なベースラインに比べてAPを4.9%向上させる。
論文 参考訳(メタデータ) (2022-03-23T11:33:27Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - Asynchronous Federated Learning for Sensor Data with Concept Drift [17.390098048134195]
フェデレートラーニング(FL)では、複数の分散デバイスが共有モデルを共同でトレーニングする。
以前のFLアプローチのほとんどは、トレーニングプロセス中にデバイス上のデータが固定され、静止していると仮定している。
コンセプトドリフトは、既存のデータと今後のデータの間に矛盾があるため、学習プロセスを複雑にします。
本稿では,ローカルデバイス上でのドリフトを検知し,対処するための新しいアプローチであるFedConDを提案する。
論文 参考訳(メタデータ) (2021-09-01T02:06:42Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
高周波指紋(RFF)は、低コストな物理層認証を実現するための有望な解決策である。
RFF抽出と識別のために機械学習に基づく手法が提案されている。
生受信信号からRFFを抽出するエンド・ツー・エンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-10T03:59:37Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。