論文の概要: Leveraging Linguistic Coordination in Reranking N-Best Candidates For
End-to-End Response Selection Using BERT
- arxiv url: http://arxiv.org/abs/2105.13479v1
- Date: Thu, 27 May 2021 22:23:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 13:41:21.093628
- Title: Leveraging Linguistic Coordination in Reranking N-Best Candidates For
End-to-End Response Selection Using BERT
- Title(参考訳): BERTを用いた終末応答選択のためのNベスト候補のランク付けにおける言語コーディネーションの活用
- Authors: Mingzhi Yu (1), Diane Litman (1), ((1) University of Pittsburgh)
- Abstract要約: 検索に基づく対話システムは,多くの候補から最適な応答を選択する。
我々は,言語コーディネートを活用して,BERT が生成する N-best 候補を再評価することを提案する。
その結果,BERTベースラインと比較してR@1が改善した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval-based dialogue systems select the best response from many
candidates. Although many state-of-the-art models have shown promising
performance in dialogue response selection tasks, there is still quite a gap
between R@1 and R@10 performance. To address this, we propose to leverage
linguistic coordination (a phenomenon that individuals tend to develop similar
linguistic behaviors in conversation) to rerank the N-best candidates produced
by BERT, a state-of-the-art pre-trained language model. Our results show an
improvement in R@1 compared to BERT baselines, demonstrating the utility of
repairing machine-generated outputs by leveraging a linguistic theory.
- Abstract(参考訳): 検索に基づく対話システムは,多くの候補から最適な応答を選択する。
多くの最先端モデルでは対話応答選択タスクにおいて有望な性能を示しているが、R@1とR@10のパフォーマンスの間にはまだかなりのギャップがある。
そこで本研究では,従来の言語モデルであるBERTのNベスト候補を再現するために,言語コーディネート(会話において個人が類似の言語行動を開発する傾向にある現象)を活用することを提案する。
以上の結果から,BERTベースラインに比べてR@1が向上し,言語理論を応用した機械出力の修復の有用性が示された。
関連論文リスト
- Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - EM Pre-training for Multi-party Dialogue Response Generation [86.25289241604199]
多人数対話では、応答発話の宛先を生成前に指定する必要がある。
本稿では,アドレナラベルを生成するための期待ステップを反復的に実行する期待最大化(EM)アプローチを提案する。
論文 参考訳(メタデータ) (2023-05-21T09:22:41Z) - IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn
Response Selection [4.471148909362883]
Graph Networkへのインプシット推論は、発話間の暗黙的な抽出と、発話とオプションの抽出を目的としている。
モデルは、初めて MuTual データセットで人のパフォーマンスを上回ります。
論文 参考訳(メタデータ) (2022-12-01T13:17:25Z) - A Systematic Evaluation of Response Selection for Open Domain Dialogue [36.88551817451512]
同じダイアログで生成された複数の応答生成元からの応答を、適切な(正)と不適切な(負)として手動でアノテートするデータセットをキュレートした。
反応選択のための最先端手法の体系的評価を行い、複数の正の候補を用いたり、手動で検証された強陰性候補を用いたりすることで、それぞれRecall@1スコアの3%と13%の増加など、相手のトレーニングデータを用いた場合と比較して、大幅な性能向上が期待できることを示す。
論文 参考訳(メタデータ) (2022-08-08T19:33:30Z) - DialogBERT: Discourse-Aware Response Generation via Learning to Recover
and Rank Utterances [18.199473005335093]
本稿では,従来の PLM に基づく対話モデルを強化した対話応答生成モデルである DialogBERT を提案する。
発話間の談話レベルのコヒーレンスを効果的に把握するために,マスク付き発話回帰を含む2つの訓練目標を提案する。
3つのマルチターン会話データセットの実験により、我々のアプローチがベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2020-12-03T09:06:23Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Do Response Selection Models Really Know What's Next? Utterance
Manipulation Strategies for Multi-turn Response Selection [11.465266718370536]
本研究では,検索に基づく対話システムにおけるユーザとシステム発話履歴の最適応答を選択するタスクについて検討する。
この問題に対処するための発話操作戦略(UMS)を提案する。
UMSは、ダイアログコヒーレンスを維持するための応答選択モデルを支援するいくつかの戦略(挿入、削除、検索)から構成される。
論文 参考訳(メタデータ) (2020-09-10T07:39:05Z) - Modelling Hierarchical Structure between Dialogue Policy and Natural
Language Generator with Option Framework for Task-oriented Dialogue System [49.39150449455407]
HDNOは、特定の対話行為表現の設計を避けるために潜在対話行為を設計するためのオプションフレームワークである。
RL,LaRL,HDSAで学習した単語レベルE2Eモデルと比較して,マルチドメイン対話のデータセットであるMultiWoz 2.0とMultiWoz 2.1でHDNOをテストする。
論文 参考訳(メタデータ) (2020-06-11T20:55:28Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。