論文の概要: The Herbarium 2021 Half-Earth Challenge Dataset
- arxiv url: http://arxiv.org/abs/2105.13808v1
- Date: Fri, 28 May 2021 13:24:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 17:19:23.674645
- Title: The Herbarium 2021 Half-Earth Challenge Dataset
- Title(参考訳): herbarium 2021 half-earth challengeデータセット
- Authors: Riccardo de Lutio, Damon Little, Barbara Ambrose, Serge Belongie
- Abstract要約: ハーバリウムシートは、世界の植物の歴史、進化、多様性のユニークな見方を示している。
世界規模で草原のデジタル化が進み、細粒度分類領域の進歩に伴い、この分野の研究を支援する機会が数多くある。
既存のデータセットは小さすぎるか、多様でないかのどちらかで、分類学、地理的分布、ホスト機関を表す。
自動分類のためのハーバリウム標本の最大かつ最も多種多様なデータセットであるハーバリウムハーフアースデータセットを提示する。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Herbarium sheets present a unique view of the world's botanical history,
evolution, and diversity. This makes them an all-important data source for
botanical research. With the increased digitisation of herbaria worldwide and
the advances in the fine-grained classification domain that can facilitate
automatic identification of herbarium specimens, there are a lot of
opportunities for supporting research in this field. However, existing datasets
are either too small, or not diverse enough, in terms of represented taxa,
geographic distribution or host institutions. Furthermore, aggregating multiple
datasets is difficult as taxa exist under a multitude of different names and
the taxonomy requires alignment to a common reference. We present the Herbarium
Half-Earth dataset, the largest and most diverse dataset of herbarium specimens
to date for automatic taxon recognition.
- Abstract(参考訳): エルバリウムシートは、世界の植物史、進化、多様性に関するユニークな見解を示している。
これにより、植物研究のすべての重要なデータソースとなる。
世界規模で草原のデジタル化が進み、草原標本の自動識別を容易にする細粒度分類領域の進歩により、この分野の研究を支援する機会が数多くある。
しかし、既存のデータセットは小さすぎるか、多様でないかのどちらかで、分類学、地理的分布、ホストの制度を表す。
さらに、複数のデータセットを集約することは困難であり、分類学は共通の基準に従っている必要がある。
自動分類のためのハーバリウム標本の最大かつ最も多種多様なデータセットであるハーバリウムハーフアースデータセットを提示する。
関連論文リスト
- Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity [14.949271003068107]
このデータセットには136万の画像が含まれており、既存のデータセットの規模を桁違いに越えている。
このデータセットは、鳥類(Aves)、クモ/ティックス/ミツ(Arachnida)、昆虫(usha)、植物(Plantae)、菌類/ムルーム(Fungi)、カタツムリ(Mollusca)、ヘビ/昆虫(Reptilia)から様々な種の画像言語対のデータを含む。
論文 参考訳(メタデータ) (2024-06-25T17:09:54Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect
Dataset [18.211840156134784]
本稿では,画像に基づく分類学的評価が可能なコンピュータビジョンモデルの訓練を目的とした,100万画像データセットを提案する。
このデータセットは魅力的な特徴も示しており、その研究はより広範な機械学習コミュニティにとって興味深いものとなるだろう。
論文 参考訳(メタデータ) (2023-07-19T20:54:08Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in
Precision Agriculture [1.64709990449384]
精密農業における作物雑草認識タスクに適した大規模・多種多様・包括的・階層的データセットであるCWD30データセットを提示する。
CWD30は20種の雑草と10種の高解像度画像を219,770枚以上、様々な成長段階、複数の視角、環境条件を含む。
データセットの階層的な分類は、きめ細かい分類を可能にし、より正確で堅牢で一般化可能なディープラーニングモデルの開発を促進する。
論文 参考訳(メタデータ) (2023-05-17T09:39:01Z) - Multi-resolution Outlier Pooling for Sorghum Classification [4.434302808728865]
Sorghum-100データセットは,最先端のガントリーシステムによって得られたソルガムのRGB画像の大規模なデータセットである。
Dynamic Outlier Poolingと呼ばれる新しいグローバルプール戦略は、このタスクにおける標準的なグローバルプール戦略より優れています。
論文 参考訳(メタデータ) (2021-06-10T13:57:33Z) - Geo-Spatiotemporal Features and Shape-Based Prior Knowledge for
Fine-grained Imbalanced Data Classification [63.916371837696396]
細粒度分類は、類似のグローバル知覚とパターンを持つ項目を区別することを目的としているが、細部によって異なる。
私たちの主な課題は、小さなクラス間バリエーションと大きなクラス内バリエーションの両方から来ています。
我々は,野生生物の利用事例における細粒度分類を改善するため,いくつかの革新を組み合わせることを提案する。
論文 参考訳(メタデータ) (2021-03-21T02:01:38Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
この研究は、1万3千以上の天体を含む最初の大規模花粉画像データセットを提示する。
本稿では, エアロバイオロジカルサンプリング, 顕微鏡画像取得, 物体検出, セグメンテーション, ラベル付けなど, 採用データ取得のステップに注目した。
論文 参考訳(メタデータ) (2020-07-09T10:33:31Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z) - Scalable learning for bridging the species gap in image-based plant
phenotyping [2.208242292882514]
ディープラーニング(データ収集、注釈付け、トレーニング)を適用する従来のパラダイムは、イメージベースの植物表現には適用できない。
データコストには、物理的サンプルの育成、イメージングとラベル付けが含まれる。
モデル性能は、各植物種のドメイン間の種間ギャップによって影響を受ける。
論文 参考訳(メタデータ) (2020-03-24T10:26:40Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。