論文の概要: Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
- arxiv url: http://arxiv.org/abs/2406.17720v1
- Date: Tue, 25 Jun 2024 17:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:31:24.729662
- Title: Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
- Title(参考訳): Arboretum: 生物多様性のための大規模マルチモーダルデータセットを実現するAI
- Authors: Chih-Hsuan Yang, Benjamin Feuer, Zaki Jubery, Zi K. Deng, Andre Nakkab, Md Zahid Hasan, Shivani Chiranjeevi, Kelly Marshall, Nirmal Baishnab, Asheesh K Singh, Arti Singh, Soumik Sarkar, Nirav Merchant, Chinmay Hegde, Baskar Ganapathysubramanian,
- Abstract要約: このデータセットには136万の画像が含まれており、既存のデータセットの規模を桁違いに越えている。
このデータセットは、鳥類(Aves)、クモ/ティックス/ミツ(Arachnida)、昆虫(usha)、植物(Plantae)、菌類/ムルーム(Fungi)、カタツムリ(Mollusca)、ヘビ/昆虫(Reptilia)から様々な種の画像言語対のデータを含む。
- 参考スコア(独自算出の注目度): 14.949271003068107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Arboretum, the largest publicly accessible dataset designed to advance AI for biodiversity applications. This dataset, curated from the iNaturalist community science platform and vetted by domain experts to ensure accuracy, includes 134.6 million images, surpassing existing datasets in scale by an order of magnitude. The dataset encompasses image-language paired data for a diverse set of species from birds (Aves), spiders/ticks/mites (Arachnida), insects (Insecta), plants (Plantae), fungus/mushrooms (Fungi), snails (Mollusca), and snakes/lizards (Reptilia), making it a valuable resource for multimodal vision-language AI models for biodiversity assessment and agriculture research. Each image is annotated with scientific names, taxonomic details, and common names, enhancing the robustness of AI model training. We showcase the value of Arboretum by releasing a suite of CLIP models trained using a subset of 40 million captioned images. We introduce several new benchmarks for rigorous assessment, report accuracy for zero-shot learning, and evaluations across life stages, rare species, confounding species, and various levels of the taxonomic hierarchy. We anticipate that Arboretum will spur the development of AI models that can enable a variety of digital tools ranging from pest control strategies, crop monitoring, and worldwide biodiversity assessment and environmental conservation. These advancements are critical for ensuring food security, preserving ecosystems, and mitigating the impacts of climate change. Arboretum is publicly available, easily accessible, and ready for immediate use. Please see the \href{https://baskargroup.github.io/Arboretum/}{project website} for links to our data, models, and code.
- Abstract(参考訳): Arboretumは、生物多様性アプリケーションのためのAIを促進するために設計された、公開可能な最大のデータセットである。
このデータセットは、iNaturalistコミュニティサイエンスプラットフォームからキュレーションされ、正確性を確保するためにドメインの専門家によって審査され、134.6万の画像が含まれており、既存のデータセットを桁違いにスケールしている。
このデータセットは、鳥類(Aves)、クモ/ティックス/ミツ(Arachnida)、昆虫(Insecta)、植物(Plantae)、菌類/ムッシュルーム(Fungi)、カタツムリ(Mollusca)、ヘビ/リザード(Reptilia)などの様々な種の画像と画像のペアデータを含んでおり、生物多様性評価や農業研究のためのマルチモーダル視覚言語AIモデルにとって貴重な資源となっている。
各画像には、科学的な名前、分類学的詳細、一般的な名前が注釈付けされており、AIモデルのトレーニングの堅牢性を高めている。
Arboretumは,4000万枚のキャプション画像のサブセットを用いてトレーニングされたCLIPモデルのスイートをリリースすることによって,その価値を実証する。
我々は、厳密な評価のためのいくつかの新しいベンチマーク、ゼロショット学習のための報告精度、ライフステージ、希少種、共生種、および分類学的階層の様々なレベルにおける評価について紹介する。
Arboretumは、害虫対策、作物のモニタリング、世界規模の生物多様性評価、環境保全など、さまざまなデジタルツールを可能にするAIモデルの開発を加速することを期待している。
これらの進歩は、食料安全保障の確保、生態系の保全、気候変動の影響緩和に不可欠である。
Arboretumは公開されており、簡単にアクセスできる。
データ、モデル、コードへのリンクについては、 \href{https://baskargroup.github.io/Arboretum/}{project website} を参照してください。
関連論文リスト
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
我々は,数百万の市民科学種の観察とウィキペディアのテキスト記述を組み合わせた新しいアプローチを提案する。
我々のフレームワークは、場所、種、テキスト記述を共通空間にマッピングし、テキスト記述からゼロショット範囲の推定を可能にする。
また,本手法は観測データと組み合わせることで,少ないデータでより正確な距離推定を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T17:22:55Z) - Insect Identification in the Wild: The AMI Dataset [35.41544843896443]
昆虫は世界の生物多様性の半分を占めるが、世界の昆虫の多くは姿を消している。
この危機にもかかわらず、昆虫の多様性と豊かさに関するデータはいまだに不十分である。
昆虫認識のための大規模な機械学習ベンチマークを初めて提供します。
論文 参考訳(メタデータ) (2024-06-18T09:57:02Z) - BioCLIP: A Vision Foundation Model for the Tree of Life [34.187429586642146]
TreeOfLife-10Mは,生物画像のML対応データセットとして最大かつ多種多様である。
次に,生命樹の基礎モデルであるBioCLIPを開発した。
様々な微細な生物分類タスクに厳格にアプローチをベンチマークする。
論文 参考訳(メタデータ) (2023-11-30T18:49:43Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Species196: A One-Million Semi-supervised Dataset for Fine-grained
Species Recognition [30.327642724046903]
種196(英: species 196)は、196科の外来種の大規模な半教師付きデータセットである。
専門家レベルの正確なアノテーションである種196-Lと、侵入種196-Uの1.2M以上のラベルのない画像を集めている。
論文 参考訳(メタデータ) (2023-09-25T14:46:01Z) - A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect
Dataset [18.211840156134784]
本稿では,画像に基づく分類学的評価が可能なコンピュータビジョンモデルの訓練を目的とした,100万画像データセットを提案する。
このデータセットは魅力的な特徴も示しており、その研究はより広範な機械学習コミュニティにとって興味深いものとなるだろう。
論文 参考訳(メタデータ) (2023-07-19T20:54:08Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
データ効率のよい画像変換器(DeiTs)のアンサンブルが従来のSOTA(SOTA)よりも大幅に優れていたことを示す。
テストしたすべてのデータセットに対して、新しいSOTAを実現し、以前のSOTAの18.48%から87.50%の誤差を削減した。
論文 参考訳(メタデータ) (2022-03-03T14:16:22Z) - Florida Wildlife Camera Trap Dataset [48.99466876948454]
フロリダ州南西部の2つの異なる場所から収集された野生生物カメラトラップ分類データセットについて紹介する。
データセットは104,495枚の画像からなり、視覚的に類似した種、様々な照明条件、スキュードクラス分布、絶滅危惧種のサンプルを含む。
論文 参考訳(メタデータ) (2021-06-23T18:53:15Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。