論文の概要: A Survey of Deep Reinforcement Learning Algorithms for Motion Planning
and Control of Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2105.14218v2
- Date: Tue, 1 Jun 2021 03:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-05 21:44:01.466773
- Title: A Survey of Deep Reinforcement Learning Algorithms for Motion Planning
and Control of Autonomous Vehicles
- Title(参考訳): 自律走行車の動作計画と制御のための深層強化学習アルゴリズムに関する研究
- Authors: Fei Ye, Shen Zhang, Pin Wang, and Ching-Yao Chan
- Abstract要約: 本稿では,自動運転車の運動計画と制御に強化学習(RL)を適用した研究について,現在の文献を体系的に要約する。
多くの既存のコントリビューションは、手作りのモジュールで構成され、それぞれが人間の解釈の容易さのために選択された機能を持つパイプラインアプローチに起因している。
本稿は、エンド・ツー・エンドのアプローチに該当する作業の増加傾向を示す。
- 参考スコア(独自算出の注目度): 2.7398985365813013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this survey, we systematically summarize the current literature on studies
that apply reinforcement learning (RL) to the motion planning and control of
autonomous vehicles. Many existing contributions can be attributed to the
pipeline approach, which consists of many hand-crafted modules, each with a
functionality selected for the ease of human interpretation. However, this
approach does not automatically guarantee maximal performance due to the lack
of a system-level optimization. Therefore, this paper also presents a growing
trend of work that falls into the end-to-end approach, which typically offers
better performance and smaller system scales. However, their performance also
suffers from the lack of expert data and generalization issues. Finally, the
remaining challenges applying deep RL algorithms on autonomous driving are
summarized, and future research directions are also presented to tackle these
challenges.
- Abstract(参考訳): 本研究では,強化学習(rl)を自律走行車の運動計画と制御に適用する研究の最近の文献を体系的に要約する。
多くの既存のコントリビューションは、手作りのモジュールで構成され、それぞれが人間の解釈の容易さのために選択された機能を持つパイプラインアプローチに起因している。
しかし、このアプローチはシステムレベルの最適化が欠如しているため、最大性能を自動保証しない。
そこで、本稿では、エンド・ツー・エンドのアプローチに陥り、パフォーマンスが向上し、システム・スケールが小さくなる傾向を示す。
しかし、その性能は専門家のデータ不足や一般化の問題にも悩まされている。
最後に、自動運転に深いRLアルゴリズムを適用した残りの課題を要約し、これらの課題に取り組むための今後の研究方向も提示する。
関連論文リスト
- The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
エンドツーエンドの自動運転におけるモチベーション、ロードマップ、方法論、課題、今後のトレンドについて、270以上の論文を包括的に分析する。
マルチモダリティ、解釈可能性、因果的混乱、堅牢性、世界モデルなど、いくつかの重要な課題を掘り下げます。
基礎モデルと視覚前訓練の現在の進歩と、これらの技術をエンドツーエンドの駆動フレームワークに組み込む方法について論じる。
論文 参考訳(メタデータ) (2023-06-29T14:17:24Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Model-based versus Model-free Deep Reinforcement Learning for Autonomous
Racing Cars [46.64253693115981]
本稿では,モデルに基づく深層強化学習エージェントが現実世界の自律車両制御タスクに一般化する方法について検討する。
本稿では,想像力で学習可能なモデルベースエージェント,パフォーマンス,サンプル効率,タスク完了,一般化に関して,モデルフリーエージェントを実質的に上回っていることを示す。
論文 参考訳(メタデータ) (2021-03-08T17:15:23Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z) - A Comparative Analysis of Deep Reinforcement Learning-enabled Freeway
Decision-making for Automated Vehicles [2.394554182452767]
人工知能の課題に対処するための強力な方法論として、深層強化学習(DRL)が登場している。
本稿では高速道路における自律走行車による意思決定問題に対するDRLアプローチについて比較する。
これらのDRL対応意思決定戦略の制御性能を評価するために,一連のシミュレーション実験を行った。
論文 参考訳(メタデータ) (2020-08-04T03:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。