論文の概要: A Survey of Reinforcement Learning for Optimization in Automation
- arxiv url: http://arxiv.org/abs/2502.09417v1
- Date: Thu, 13 Feb 2025 15:40:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:50:59.522016
- Title: A Survey of Reinforcement Learning for Optimization in Automation
- Title(参考訳): 自動化における最適化のための強化学習に関する調査
- Authors: Ahmad Farooq, Kamran Iqbal,
- Abstract要約: この記事では、自動化におけるRLの現在の状況について考察し、製造業、エネルギーシステム、ロボット工学におけるその役割に注目します。
最先端の手法、主要な課題、そして各セクターにおける今後の研究の道程について論じ、複雑な最適化課題を解決するためのRLの能力を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reinforcement Learning (RL) has become a critical tool for optimization challenges within automation, leading to significant advancements in several areas. This review article examines the current landscape of RL within automation, with a particular focus on its roles in manufacturing, energy systems, and robotics. It discusses state-of-the-art methods, major challenges, and upcoming avenues of research within each sector, highlighting RL's capacity to solve intricate optimization challenges. The paper reviews the advantages and constraints of RL-driven optimization methods in automation. It points out prevalent challenges encountered in RL optimization, including issues related to sample efficiency and scalability; safety and robustness; interpretability and trustworthiness; transfer learning and meta-learning; and real-world deployment and integration. It further explores prospective strategies and future research pathways to navigate these challenges. Additionally, the survey includes a comprehensive list of relevant research papers, making it an indispensable guide for scholars and practitioners keen on exploring this domain.
- Abstract(参考訳): 強化学習(RL)は、自動化における課題を最適化するための重要なツールとなり、いくつかの分野で大きな進歩をもたらしています。
本稿では, 自動化におけるRLの現況を概観し, 製造, エネルギーシステム, ロボット工学におけるその役割に注目した。
最先端の手法、主要な課題、そして各セクターにおける今後の研究の道程について論じ、複雑な最適化課題を解決するためのRLの能力を強調している。
本稿では、自動化におけるRL駆動最適化手法の利点と制約について概説する。
サンプル効率とスケーラビリティ、安全性と堅牢性、解釈可能性と信頼性、トランスファーラーニングとメタラーニング、現実世界のデプロイメントと統合など、RL最適化で直面する課題を指摘した。
さらに、これらの課題をナビゲートするための今後の戦略と今後の研究経路を探求する。
さらに、調査には関連する研究論文の総合的なリストが含まれており、この領域の探索に熱心な学者や実践者にとって、必須のガイドとなっている。
関連論文リスト
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
大規模言語モデル(LLM)は、マルチタスク学習、サンプル効率、高レベルのタスク計画といった側面において強化学習(RL)を強化するための有望な道として出現する。
本稿では,情報処理装置,報酬設計装置,意思決定装置,ジェネレータの4つの役割を含む,RLにおけるLLMの機能を体系的に分類する構造的分類法を提案する。
論文 参考訳(メタデータ) (2024-03-30T08:28:08Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
進化的強化学習(ERL)は進化的アルゴリズム(EA)と強化学習(RL)を統合して最適化する。
本調査では,ERLの多様な研究分野について概観する。
論文 参考訳(メタデータ) (2024-01-22T14:06:37Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - A Review of Deep Reinforcement Learning in Serverless Computing:
Function Scheduling and Resource Auto-Scaling [2.0722667822370386]
本稿では、サーバーレスコンピューティングにおけるDeep Reinforcement Learning(DRL)技術の適用について、包括的なレビューを行う。
DRLをサーバレスコンピューティングに適用する最近の研究の体系的なレビューが、さまざまなアルゴリズム、モデル、パフォーマンスについて紹介されている。
分析の結果,DRLは環境から学習・適応する能力を有しており,機能スケジューリングと資源スケーリングの効率化に期待できる結果が得られた。
論文 参考訳(メタデータ) (2023-10-05T09:26:04Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems [0.0]
強化学習(RL)は、急速に人気が高まっている。
高いコストと環境との相互作用の危険性のため、RLにはアクセスできない領域がまだ広い範囲にある。
オフラインRLは、以前に収集されたインタラクションの静的データセットからのみ学習するパラダイムである。
論文 参考訳(メタデータ) (2022-03-02T20:05:11Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
AutoRL(Automated Reinforcement Learning)には、AutoMLの標準的なアプリケーションだけでなく、RL特有の課題も含まれている。
我々は共通の分類法を提供し、各領域を詳細に議論し、今後の研究者にとって関心のあるオープンな問題を提起する。
論文 参考訳(メタデータ) (2022-01-11T12:41:43Z) - A Survey of Deep Reinforcement Learning Algorithms for Motion Planning
and Control of Autonomous Vehicles [2.7398985365813013]
本稿では,自動運転車の運動計画と制御に強化学習(RL)を適用した研究について,現在の文献を体系的に要約する。
多くの既存のコントリビューションは、手作りのモジュールで構成され、それぞれが人間の解釈の容易さのために選択された機能を持つパイプラインアプローチに起因している。
本稿は、エンド・ツー・エンドのアプローチに該当する作業の増加傾向を示す。
論文 参考訳(メタデータ) (2021-05-29T05:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。