Conformal Uncertainty Sets for Robust Optimization
- URL: http://arxiv.org/abs/2105.14957v1
- Date: Mon, 31 May 2021 13:42:24 GMT
- Title: Conformal Uncertainty Sets for Robust Optimization
- Authors: Chancellor Johnstone
- Abstract summary: We use Mahalanobis distance as a novel function for multi-target regression and the construction of joint prediction regions.
We also connect conformal prediction regions to robust optimization, providing finite sample valid and conservative uncertainty sets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision-making under uncertainty is hugely important for any decisions
sensitive to perturbations in observed data. One method of incorporating
uncertainty into making optimal decisions is through robust optimization, which
minimizes the worst-case scenario over some uncertainty set. We explore
Mahalanobis distance as a novel function for multi-target regression and the
construction of joint prediction regions. We also connect conformal prediction
regions to robust optimization, providing finite sample valid and conservative
uncertainty sets, aptly named conformal uncertainty sets. We compare the
coverage and efficiency of the conformal prediction regions generated with
Mahalanobis distance to other conformal prediction regions. We also construct a
small robust optimization example to compare conformal uncertainty sets to
those constructed under the assumption of normality.
Related papers
- End-to-End Conformal Calibration for Optimization Under Uncertainty [32.844953018302874]
This paper develops an end-to-end framework to learn the uncertainty estimates for conditional optimization.
In addition, we propose to represent arbitrary convex uncertainty sets with partially convex neural networks.
Our approach consistently improves upon two-stage-then-optimize.
arXiv Detail & Related papers (2024-09-30T17:38:27Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Conformal Contextual Robust Optimization [21.2737854880866]
Data-driven approaches to predict probabilistic decision-making problems seek to mitigate the risk of uncertainty region mis robustness in safety-critical settings.
We propose a Conformal-Then-Predict (CPO) framework for.
probability-then-optimize decision-making problems.
arXiv Detail & Related papers (2023-10-16T01:58:27Z) - Bayesian Optimization with Conformal Prediction Sets [44.565812181545645]
Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models.
We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity.
In many cases we find that query coverage can be significantly improved without harming sample-efficiency.
arXiv Detail & Related papers (2022-10-22T17:01:05Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
Many real-world optimization problems uncertain parameters with probability can be estimated using contextual feature information.
In contrast to the standard approach of estimating the distribution of uncertain parameters, we propose an integrated conditional estimation approach.
We show that our ICEO approach is theally consistent under moderate conditions.
arXiv Detail & Related papers (2021-10-24T04:49:35Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Nonparametric Estimation of Uncertainty Sets for Robust Optimization [2.741266294612776]
We investigate a data-driven approach to constructing uncertainty sets for robust optimization problems.
We provide a nonparametric method to estimate uncertainty sets whose probability mass is guaranteed to approximate a given target mass.
arXiv Detail & Related papers (2020-04-07T01:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.