論文の概要: Enhancing Trajectory Prediction using Sparse Outputs: Application to
Team Sports
- arxiv url: http://arxiv.org/abs/2106.00173v1
- Date: Tue, 1 Jun 2021 01:43:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 03:08:31.056805
- Title: Enhancing Trajectory Prediction using Sparse Outputs: Application to
Team Sports
- Title(参考訳): スパース出力を用いた軌道予測の強化:チームスポーツへの応用
- Authors: Brandon Victor, Aiden Nibali, Zhen He, David L. Carey
- Abstract要約: プレイヤー予測のためにディープラーニングモデルをトレーニングするのは、驚くほど難しいかもしれません。
本研究では,スパース軌道の予測と一定加速度による補間によりトレーニングを改善する新しい手法を提案する。
我々は,他の選手の完全な軌跡を条件にすることで,プレイヤーのサブセットに対する予測軌跡の精度を向上できることを見出した。
- 参考スコア(独自算出の注目度): 6.26476800426345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sophisticated trajectory prediction models that effectively mimic team
dynamics have many potential uses for sports coaches, broadcasters and
spectators. However, through experiments on soccer data we found that it can be
surprisingly challenging to train a deep learning model for player trajectory
prediction which outperforms linear extrapolation on average distance between
predicted and true future trajectories. We propose and test a novel method for
improving training by predicting a sparse trajectory and interpolating using
constant acceleration, which improves performance for several models. This
interpolation can also be used on models that aren't trained with sparse
outputs, and we find that this consistently improves performance for all tested
models. Additionally, we find that the accuracy of predicted trajectories for a
subset of players can be improved by conditioning on the full trajectories of
the other players, and that this is further improved when combined with sparse
predictions. We also propose a novel architecture using graph networks and
multi-head attention (GraN-MA) which achieves better performance than other
tested state-of-the-art models on our dataset and is trivially adapted for both
sparse trajectories and full-trajectory conditioned trajectory prediction.
- Abstract(参考訳): チームのダイナミクスを効果的に模倣する洗練された軌道予測モデルは、スポーツコーチ、放送局、観客に多くの潜在的用途がある。
しかし、サッカーデータを用いた実験により、予測と真の将来の軌跡の間の平均距離で線形外挿を上回り、プレイヤー軌道予測のためのディープラーニングモデルをトレーニングすることは驚くほど困難であることがわかった。
本研究では,スパース軌道の予測と一定加速度による補間により訓練を改善する新しい手法を提案し,実験を行った。
この補間は、スパースアウトプットで訓練されていないモデルでも使用することができ、テストされたすべてのモデルのパフォーマンスを一貫して改善することがわかった。
さらに,他のプレイヤーの完全な軌跡を条件にすることで,プレイヤーのサブセットに対する予測軌跡の精度が向上し,スパース予測と組み合わせることでさらに改善できることが判明した。
また、グラフネットワークとマルチヘッドアテンション(gran-ma)を用いた新しいアーキテクチャを提案する。このアーキテクチャは、データセット上の他のテストされた最先端モデルよりも優れた性能を実現し、スパーストラジェクタとフルトラジェクション条件付き軌道予測の両方に自明に適合する。
関連論文リスト
- Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
本稿では,AWTAの損失を最先端のモーション予測モデルと統合して性能を向上させる方法を示す。
我々の手法は、WTAを用いて訓練された任意の軌道予測モデルに容易に組み込むことができる。
論文 参考訳(メタデータ) (2024-09-17T13:26:17Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
複数モデルの予測に基づく軌道予測に適用可能な新しいサンプリング手法を提案する。
まず、予測確率に基づく従来のサンプリングは、モデル間のアライメントの欠如により性能を低下させることができることを示す。
基礎学習者として最先端モデルを用いて,最適軌道サンプリングのための多種多様な効果的なアンサンブルを構築した。
論文 参考訳(メタデータ) (2024-09-16T09:03:28Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Valeo4Cast: A Modular Approach to End-to-End Forecasting [93.86257326005726]
我々のソリューションはArgoverse 2 end-to-end Forecasting Challengeで63.82 mAPfでランクインした。
私たちは、知覚から予測までエンドツーエンドのトレーニングを通じて、このタスクに取り組む現在のトレンドから離れ、代わりにモジュラーアプローチを使用します。
私たちは、昨年の優勝者より+17.1ポイント、今年の優勝者より+13.3ポイント、予測結果を+17.1ポイント上回る。
論文 参考訳(メタデータ) (2024-06-12T11:50:51Z) - Machine Learning for Soccer Match Result Prediction [0.9002260638342727]
本章では、利用可能なデータセット、モデルと機能のタイプ、モデルパフォーマンスを評価する方法について論じる。
本章の目的は,サッカーの試合結果予測のための機械学習の現状と今後の展開について概説することである。
論文 参考訳(メタデータ) (2024-03-12T14:00:50Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - An End-to-End Framework of Road User Detection, Tracking, and Prediction
from Monocular Images [11.733622044569486]
我々はODTPと呼ばれる検出、追跡、軌道予測のためのエンドツーエンドのフレームワークを構築している。
検出結果に基づいて、トラジェクトリ予測器であるDCENet++を認識および訓練するために、最先端のオンラインマルチオブジェクト追跡モデルであるQD-3DTを採用している。
本研究では,自律運転に広く利用されているnuScenesデータセット上でのODTPの性能を評価する。
論文 参考訳(メタデータ) (2023-08-09T15:46:25Z) - Graph-based Spatial Transformer with Memory Replay for Multi-future
Pedestrian Trajectory Prediction [13.466380808630188]
歴史的軌跡に基づく複数経路の予測モデルを提案する。
提案手法は,空間情報を利用するとともに,時間的に矛盾した軌道を補正することができる。
実験により,提案手法は,複数未来予測の最先端性能と,単一未来予測の競合結果が得られることを示した。
論文 参考訳(メタデータ) (2022-06-12T10:25:12Z) - Transforming Model Prediction for Tracking [109.08417327309937]
トランスフォーマーは、誘導バイアスの少ないグローバルな関係を捉え、より強力なターゲットモデルの予測を学ぶことができる。
提案したトラッカーをエンドツーエンドにトレーニングし、複数のトラッカーデータセットに関する総合的な実験を行うことで、その性能を検証する。
我々のトラッカーは3つのベンチマークで新しい技術状態を設定し、挑戦的なLaSOTデータセットで68.5%のAUCを達成した。
論文 参考訳(メタデータ) (2022-03-21T17:59:40Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。