論文の概要: Decision Concept Lattice vs. Decision Trees and Random Forests
- arxiv url: http://arxiv.org/abs/2106.00387v1
- Date: Tue, 1 Jun 2021 10:45:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 21:05:08.071713
- Title: Decision Concept Lattice vs. Decision Trees and Random Forests
- Title(参考訳): 決定概念の格子対決定木とランダムフォレスト
- Authors: Egor Dudyrev, Sergei O. Kuznetsov
- Abstract要約: 我々は、新しい教師付き機械学習モデルを提案することによって、決定木、それらのアンサンブル、FCAの考え方を融合する。
具体的には、まず、決定木に基づく概念格子の一部を構成する状態時間アルゴリズムを提案する。
次に,分類問題と回帰問題の両方を解決するための概念格子に基づく予測スキームについて述べる。
- 参考スコア(独自算出の注目度): 4.898744396854312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision trees and their ensembles are very popular models of supervised
machine learning. In this paper we merge the ideas underlying decision trees,
their ensembles and FCA by proposing a new supervised machine learning model
which can be constructed in polynomial time and is applicable for both
classification and regression problems. Specifically, we first propose a
polynomial-time algorithm for constructing a part of the concept lattice that
is based on a decision tree. Second, we describe a prediction scheme based on a
concept lattice for solving both classification and regression tasks with
prediction quality comparable to that of state-of-the-art models.
- Abstract(参考訳): 決定木とそのアンサンブルは、教師付き機械学習の非常に人気のあるモデルである。
本稿では、多項式時間で構築可能な新しい教師付き機械学習モデルを提案し、分類問題と回帰問題の両方に適用できる決定木、それらのアンサンブル、FCAの考え方を融合する。
具体的には,まず決定木に基づく概念格子の一部を構成する多項式時間アルゴリズムを提案する。
第2に,最先端モデルに匹敵する予測品質で分類タスクと回帰タスクの両方を解くための概念格子に基づく予測スキームについて述べる。
関連論文リスト
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
混合モデルに対する説明可能性-雑音比の概念を導入する。
本研究では,混合モデルを入力として,データに依存しない時間に適切な木を構築するアルゴリズムを提案する。
結果の決定ツリーの誤り率について,上と下の境界を証明した。
論文 参考訳(メタデータ) (2024-11-03T14:00:20Z) - Learning accurate and interpretable decision trees [27.203303726977616]
我々は、同じドメインから繰り返しデータにアクセスして決定木学習アルゴリズムを設計するためのアプローチを開発する。
本研究では,ベイズ決定木学習における事前パラメータのチューニングの複雑さについて検討し,その結果を決定木回帰に拡張する。
また、学習した決定木の解釈可能性について検討し、決定木を用いた説明可能性と精度のトレードオフを最適化するためのデータ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-24T20:10:10Z) - An Axiomatic Approach to Model-Agnostic Concept Explanations [67.84000759813435]
本稿では、線形性、再帰性、類似性という3つの自然な公理を満たす概念的説明へのアプローチを提案する。
次に、従来の概念的説明手法とのつながりを確立し、それらの意味の異なる意味についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-12T20:53:35Z) - Greedy Algorithm for Inference of Decision Trees from Decision Rule
Systems [0.0]
決定木と決定ルールシステムは属性、知識表現ツール、アルゴリズムとして重要な役割を果たす。
本稿では,逆変換問題について考察する。
本研究は,決定木全体を構築する代わりに,与えられた属性に対する決定木の操作をシミュレートする欲求時間アルゴリズムに焦点を当てる。
論文 参考訳(メタデータ) (2024-01-08T09:28:55Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Invariant Causal Set Covering Machines [64.86459157191346]
決定木のようなルールベースのモデルは、解釈可能な性質のために実践者にアピールする。
しかし、そのようなモデルを生成する学習アルゴリズムは、しばしば刺激的な関連に弱いため、因果関係の洞察を抽出することが保証されていない。
Invariant Causal Set Covering Machines は、古典的集合被覆マシンアルゴリズムの拡張であり、二値ルールの結合/分離を可能とし、スプリアス関係を確実に回避する。
論文 参考訳(メタデータ) (2023-06-07T20:52:01Z) - Construction of Decision Trees and Acyclic Decision Graphs from Decision
Rule Systems [0.0]
本稿では,決定木を構成する複雑さと決定木を表す非周期決定グラフについて考察する。
決定木全体を構築しない可能性について論じるが、与えられた入力に対して、この木で計算経路を記述する。
論文 参考訳(メタデータ) (2023-05-02T18:40:48Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - Contextual Decision Trees [62.997667081978825]
学習アンサンブルの1つの浅い木を特徴量ベースで選択するための,マルチアームのコンテキスト付きバンドレコメンデーションフレームワークを提案する。
トレーニングされたシステムはランダムフォレスト上で動作し、最終的な出力を提供するためのベース予測器を動的に識別する。
論文 参考訳(メタデータ) (2022-07-13T17:05:08Z) - Decision Tree Learning with Spatial Modal Logics [0.0]
特に時間に依存したデータに対して、より仮説的なシンボリック学習法が出現し始めている。
本稿では,空間決定木学習の理論を提案し,空間決定木学習アルゴリズムのプロトタイプ実装について述べる。
空間決定木の予測能力と古典命題決定木の予測能力を複数バージョンで比較し,多クラス画像分類問題を提案する。
論文 参考訳(メタデータ) (2021-09-17T02:35:18Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。