論文の概要: Motion Code: Robust Time Series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
- arxiv url: http://arxiv.org/abs/2402.14081v3
- Date: Mon, 25 Nov 2024 18:57:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:17:39.334814
- Title: Motion Code: Robust Time Series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
- Title(参考訳): 動作コード:スパース変分マルチ確率過程学習によるロバスト時系列分類と予測
- Authors: Chandrajit Bajaj, Minh Nguyen,
- Abstract要約: 本稿では,各時系列を連続的なプロセスの実現とみなす新しいフレームワークを提案する。
この数学的アプローチは、タイムスタンプ間の依存関係をキャプチャし、ノイズ内の隠れた時間変化信号を検出する。
現実のパーキンソン病センサートラッキングを含むノイズの多いデータセットの実験は、確立されたベンチマークに対するモーションコードの強力なパフォーマンスを実証している。
- 参考スコア(独自算出の注目度): 3.2857981869020327
- License:
- Abstract: Despite extensive research, time series classification and forecasting on noisy data remain highly challenging. The main difficulties lie in finding suitable mathematical concepts to describe time series and effectively separate noise from the true signals. Unlike traditional methods treating time series as static vectors or fixed sequences, we propose a novel framework that views each time series, regardless of length, as a realization of a continuous-time stochastic process. This mathematical approach captures dependencies across timestamps and detects hidden, time-varying signals within the noise. However, real-world data often involves multiple distinct dynamics, making it insufficient to model the entire process with a single stochastic model. To address this, we assign each dynamic a unique signature vector and introduce the concept of "most informative timestamps" to infer a sparse approximation of the individual dynamics from these vectors. The resulting model, called Motion Code, includes parameters that fully capture diverse underlying dynamics in an integrated manner, enabling simultaneous classification and forecasting of time series. Extensive experiments on noisy datasets, including real-world Parkinson's disease sensor tracking, demonstrate Motion Code's strong performance against established benchmarks for time series classification and forecasting.
- Abstract(参考訳): 広範な研究にもかかわらず、時系列の分類とノイズの多いデータの予測は非常に困難である。
主な困難は、時系列を記述するのに適した数学的概念を見つけ、真の信号から効果的にノイズを分離することである。
時系列を静的ベクトルや固定シーケンスとして扱う従来の手法とは異なり、長さにかかわらず各時系列を連続時間確率過程の実現とみなす新しい枠組みを提案する。
この数学的アプローチは、タイムスタンプ間の依存関係をキャプチャし、ノイズ内の隠れた時間変化信号を検出する。
しかし、実世界のデータは、しばしば複数の異なるダイナミクスを伴い、単一の確率モデルでプロセス全体をモデル化するには不十分である。
この問題に対処するために、各動的に一意なシグネチャベクトルを割り当て、これらのベクトルから個々のダイナミクスのスパース近似を推測するために「最も情報性の高いタイムスタンプ」の概念を導入する。
結果として得られたモデルであるMotion Codeには、さまざまな基礎となるダイナミクスを統合的に完全にキャプチャするパラメータが含まれており、時系列の同時分類と予測を可能にしている。
現実のパーキンソン病センサートラッキングを含むノイズの多いデータセットに関する大規模な実験は、時系列分類と予測のための確立されたベンチマークに対するモーションコードの強いパフォーマンスを実証している。
関連論文リスト
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Feature Programming for Multivariate Time Series Prediction [7.0220697993232]
本稿では,時系列モデリングのためのプログラム可能な機能工学の概念を紹介する。
本稿では,ノイズの多い時系列に対して大量の予測機能を生成する機能プログラミングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-09T20:46:55Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - DCSF: Deep Convolutional Set Functions for Classification of
Asynchronous Time Series [5.339109578928972]
非同期時系列(Asynchronous Time Series)は、すべてのチャンネルが非同期に独立して観察される時系列である。
本稿では,非同期時系列分類タスクにおいて,高度にスケーラブルでメモリ効率のよい新しいフレームワークを提案する。
我々は、定期的にサンプリングされ、完全に観測される時系列の、密接に関連する問題分類のためによく研究されている畳み込みニューラルネットワークを探索する。
論文 参考訳(メタデータ) (2022-08-24T08:47:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
非定常時系列に対する一般化可能な表現を学習するための自己教師型フレームワークを提案する。
我々のモチベーションは、時系列データの動的性質をモデル化する能力が特に有用である医療分野に起因している。
論文 参考訳(メタデータ) (2021-06-01T19:53:24Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。